Effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors, dapagliflozin and canagliflozin, on the musculoskeletal system in an experimental model of diabetes induced by high-fat diet and streptozotocin in rats

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Piotr Londzin , Maria Zych , Aleksandra Janas , Szymon Siudak , Joanna Folwarczna
{"title":"Effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors, dapagliflozin and canagliflozin, on the musculoskeletal system in an experimental model of diabetes induced by high-fat diet and streptozotocin in rats","authors":"Piotr Londzin ,&nbsp;Maria Zych ,&nbsp;Aleksandra Janas ,&nbsp;Szymon Siudak ,&nbsp;Joanna Folwarczna","doi":"10.1016/j.biopha.2025.117912","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of SGLT2 inhibitors, a new group of antidiabetic drugs, on the skeletal system is a matter of debate. There are concerns that they may unfavorably affect bones. The aim of the study was to investigate the effects of dapagliflozin and canagliflozin on musculoskeletal system in an experimental rat model of type 2 diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ). The experiments were carried out on mature female rats. To induce diabetes, STZ was administered 2 weeks after the introduction of HFD. Administration of dapagliflozin (1.4 mg/kg p.o.) or canagliflozin (4.2 mg/kg p.o.) started 1 week after the STZ injection, and lasted 4 weeks. Skeletal muscle mass and strength, serum bone turnover marker concentration and other biochemical parameters, and bone mass, density, histomorphometric parameters and mechanical properties were determined. Diabetes induced decreases in skeletal muscle mass and osteoporotic changes, including decreases in bone density, and worsening of the histomorphometric parameters and cancellous bone mechanical properties. The SGLT2 inhibitors decreased glycemia and other diabetes-induced metabolic changes, and counteracted only some unfavorable effects of diabetes on bones. The effects of dapagliflozin and canagliflozin on metabolic parameters were similar, whereas there were some differences in their effects on the skeletal system. The study demonstrated possibility of differential skeletal effects of different SGLT2 inhibitors in diabetic conditions, indicating the need for caution concerning their use in patients at risk of bone fractures.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"184 ","pages":"Article 117912"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001064","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of SGLT2 inhibitors, a new group of antidiabetic drugs, on the skeletal system is a matter of debate. There are concerns that they may unfavorably affect bones. The aim of the study was to investigate the effects of dapagliflozin and canagliflozin on musculoskeletal system in an experimental rat model of type 2 diabetes induced by a high-fat diet (HFD) and streptozotocin (STZ). The experiments were carried out on mature female rats. To induce diabetes, STZ was administered 2 weeks after the introduction of HFD. Administration of dapagliflozin (1.4 mg/kg p.o.) or canagliflozin (4.2 mg/kg p.o.) started 1 week after the STZ injection, and lasted 4 weeks. Skeletal muscle mass and strength, serum bone turnover marker concentration and other biochemical parameters, and bone mass, density, histomorphometric parameters and mechanical properties were determined. Diabetes induced decreases in skeletal muscle mass and osteoporotic changes, including decreases in bone density, and worsening of the histomorphometric parameters and cancellous bone mechanical properties. The SGLT2 inhibitors decreased glycemia and other diabetes-induced metabolic changes, and counteracted only some unfavorable effects of diabetes on bones. The effects of dapagliflozin and canagliflozin on metabolic parameters were similar, whereas there were some differences in their effects on the skeletal system. The study demonstrated possibility of differential skeletal effects of different SGLT2 inhibitors in diabetic conditions, indicating the need for caution concerning their use in patients at risk of bone fractures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信