Single-cell RNAseq reveals adverse metabolic transcriptional program in intrahepatic cholangiocarcinoma malignant cells

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Christophe Desterke , Raquel Francés , Claudia Monge , Yuanji Fu , Agnès Marchio , Pascal Pineau , Jorge Mata-Garrido
{"title":"Single-cell RNAseq reveals adverse metabolic transcriptional program in intrahepatic cholangiocarcinoma malignant cells","authors":"Christophe Desterke ,&nbsp;Raquel Francés ,&nbsp;Claudia Monge ,&nbsp;Yuanji Fu ,&nbsp;Agnès Marchio ,&nbsp;Pascal Pineau ,&nbsp;Jorge Mata-Garrido","doi":"10.1016/j.bbrep.2025.101949","DOIUrl":null,"url":null,"abstract":"<div><div>Intrahepatic cholangiocarcinoma (ICA) is a highly aggressive primary liver cancer, which originates from the epithelial cells of the bile ducts. The transcriptional profile of metabolic enzymes was investigated at both bulk and single-cell levels in tumor samples from distinct ICA cohorts. In a training cohort (TCGA consortium), 16 genes encoding for metabolic enzymes were found overexpressed in cases with poor survival. A computed metabolic gene expression score was significantly associated with worse ICA prognosis at the univariate level (overall survival [OS] log-rank p = 8.2e-4). After adjusting for Ishak fibrosis score and tumor staging, the metabolic expression remained an independent predictor of poor prognosis (multivariate OS log-rank p = 0.01). Seven genes encoding key enzymes (FH, MAT2B, PLOD2, PLOD1, PDE6D, ALDOC, and NT5DC3) were validated as markers of the proliferative subclass of ICA in the GSE32225 dataset, related to poor prognosis. The metabolic score was significantly different between the inflammatory and proliferative subclasses in the validation cohort (p &lt; 2.2e-16). At the single-cell level, in the tumor microenvironment of 10 ICA patients, these seven enzymes were predominantly expressed by malignant cells. The single-cell metabolic score was thus higher in malignant cells. This study identifies a metabolic transcriptional program linked to poor prognosis in ICA, independent of fibrosis and tumor staging.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"Article 101949"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intrahepatic cholangiocarcinoma (ICA) is a highly aggressive primary liver cancer, which originates from the epithelial cells of the bile ducts. The transcriptional profile of metabolic enzymes was investigated at both bulk and single-cell levels in tumor samples from distinct ICA cohorts. In a training cohort (TCGA consortium), 16 genes encoding for metabolic enzymes were found overexpressed in cases with poor survival. A computed metabolic gene expression score was significantly associated with worse ICA prognosis at the univariate level (overall survival [OS] log-rank p = 8.2e-4). After adjusting for Ishak fibrosis score and tumor staging, the metabolic expression remained an independent predictor of poor prognosis (multivariate OS log-rank p = 0.01). Seven genes encoding key enzymes (FH, MAT2B, PLOD2, PLOD1, PDE6D, ALDOC, and NT5DC3) were validated as markers of the proliferative subclass of ICA in the GSE32225 dataset, related to poor prognosis. The metabolic score was significantly different between the inflammatory and proliferative subclasses in the validation cohort (p < 2.2e-16). At the single-cell level, in the tumor microenvironment of 10 ICA patients, these seven enzymes were predominantly expressed by malignant cells. The single-cell metabolic score was thus higher in malignant cells. This study identifies a metabolic transcriptional program linked to poor prognosis in ICA, independent of fibrosis and tumor staging.
单细胞 RNAseq 揭示肝内胆管癌恶性细胞的不良代谢转录程序
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信