Raoul Kamadjeu , Oyeladun Okunromade , Bola Biliaminu Lawal , Muzammil Gadanya , Salma Ali Suwaid , Eduardo Celades Blanco , Ifedayo Adetifa , Elizabeth A. Kelvin
{"title":"Diphtheria transmission dynamics – Unveiling generation time and reproduction numbers from the 2022–2023 outbreak in Kano state, Nigeria","authors":"Raoul Kamadjeu , Oyeladun Okunromade , Bola Biliaminu Lawal , Muzammil Gadanya , Salma Ali Suwaid , Eduardo Celades Blanco , Ifedayo Adetifa , Elizabeth A. Kelvin","doi":"10.1016/j.idm.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Diphtheria, caused by Corynebacterium diphtheriae, remains a serious public health threat in areas with low vaccination coverage, despite global declines due to widespread immunization and improved clinical management. A major outbreak in Nigeria from 2022 to 2023 underscored the persistent risk in regions with inadequate vaccination. This study aims to assess the transmission dynamics of diphtheria in Kano State, the epicenter of the outbreak, by estimating key epidemiological parameters, including the generation time (GT), approximated in our study by serial interval, and effective reproduction number (Rₜ).</div></div><div><h3>Methods</h3><div>We analyzed diphtheria case-based data from Kano State, Nigeria, collected between August 18, 2022, and November 29, 2023. Generation time was approximated using serial intervals in confirmed cases within the same geographical areas. The effective reproduction number (Rₜ) was calculated using four methods: Maximum Likelihood Estimation (MLE), Exponential Growth (EG), Sequential Bayesian (SB), and Time-Dependent (TD), focusing on the period of maximum exponential growth. A sensitivity analysis was conducted to quantify the impact of uncertainties in the GT derived from our data on the estimation of Rₜ.</div></div><div><h3>Results</h3><div>Over the 469-day outbreak period, 13,899 diphtheria cases were reported, with complete data available for 9406 cases. The estimated mean generation time was 2.8 days (SD = 3.48 days), with 97% of cases having a GT of less than 21 days. The Rₜ estimates varied across methods, with the TD method producing the highest reproduction number of 2.21 during the peak growth period. Sensitivity analysis showed that Rₜ estimates increased with longer generation times. The models, except for the SB method, demonstrated a generally strong fit with the outbreak exponential growth period.</div></div><div><h3>Conclusion</h3><div>The ongoing diphtheria outbreak in Nigeria highlights the critical threat posed by declining vaccination coverage. This study provides valuable insights into the transmission dynamics of diphtheria during a prolonged and widespread outbreak, enhancing our understanding of disease spread in this context. While certain limitations may influence the interpretation of our estimates, the findings offer valuable information for future diphtheria outbreak preparedness and response in the African context.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 2","pages":"Pages 680-690"},"PeriodicalIF":8.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042725000089","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Diphtheria, caused by Corynebacterium diphtheriae, remains a serious public health threat in areas with low vaccination coverage, despite global declines due to widespread immunization and improved clinical management. A major outbreak in Nigeria from 2022 to 2023 underscored the persistent risk in regions with inadequate vaccination. This study aims to assess the transmission dynamics of diphtheria in Kano State, the epicenter of the outbreak, by estimating key epidemiological parameters, including the generation time (GT), approximated in our study by serial interval, and effective reproduction number (Rₜ).
Methods
We analyzed diphtheria case-based data from Kano State, Nigeria, collected between August 18, 2022, and November 29, 2023. Generation time was approximated using serial intervals in confirmed cases within the same geographical areas. The effective reproduction number (Rₜ) was calculated using four methods: Maximum Likelihood Estimation (MLE), Exponential Growth (EG), Sequential Bayesian (SB), and Time-Dependent (TD), focusing on the period of maximum exponential growth. A sensitivity analysis was conducted to quantify the impact of uncertainties in the GT derived from our data on the estimation of Rₜ.
Results
Over the 469-day outbreak period, 13,899 diphtheria cases were reported, with complete data available for 9406 cases. The estimated mean generation time was 2.8 days (SD = 3.48 days), with 97% of cases having a GT of less than 21 days. The Rₜ estimates varied across methods, with the TD method producing the highest reproduction number of 2.21 during the peak growth period. Sensitivity analysis showed that Rₜ estimates increased with longer generation times. The models, except for the SB method, demonstrated a generally strong fit with the outbreak exponential growth period.
Conclusion
The ongoing diphtheria outbreak in Nigeria highlights the critical threat posed by declining vaccination coverage. This study provides valuable insights into the transmission dynamics of diphtheria during a prolonged and widespread outbreak, enhancing our understanding of disease spread in this context. While certain limitations may influence the interpretation of our estimates, the findings offer valuable information for future diphtheria outbreak preparedness and response in the African context.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.