Shawn R. Brueshaber , Zhimeng Zhang , John H. Rogers , Gerald Eichstädt , Glenn S. Orton , Davide Grassi , Leigh N. Fletcher , Cheng Li , Shinji Mizumoto , Alessandro Mura , Fabiano Oyafuso , Ramanakumar Sankar , Michael H. Wong , Candice J. Hansen , Steven Levin , Scott Bolton
{"title":"Multi-instrument sounding of a Jovian thunderstorm from Juno","authors":"Shawn R. Brueshaber , Zhimeng Zhang , John H. Rogers , Gerald Eichstädt , Glenn S. Orton , Davide Grassi , Leigh N. Fletcher , Cheng Li , Shinji Mizumoto , Alessandro Mura , Fabiano Oyafuso , Ramanakumar Sankar , Michael H. Wong , Candice J. Hansen , Steven Levin , Scott Bolton","doi":"10.1016/j.icarus.2025.116465","DOIUrl":null,"url":null,"abstract":"<div><div>Thunderstorms play a significant role in transporting heat from the deep interior to space on giant planets. We present observations of a 3,400-km wide thunderstorm complex in Jupiter’s North Equatorial Belt (NEB) during the 38th periapse of the Juno spacecraft on 29 Nov. 2021. Data were acquired by the Microwave Radiometer (MWR), the visible light JunoCam instrument, the Jovian InfraRed Auroral Mapper (JIRAM), and from supporting Earth-based imaging. This was the first time Juno was able to observe a thunderstorm at suitably low emission angles with multiple instruments at close range (<span><math><mo>∼</mo></math></span>5,690 km), making it the most comprehensive close-up assessment of a Jovian thunderstorm to date. Lightning detection confirmed the Storm’s vigorous convective nature. MWR brightness temperatures indicate this Storm appears to be wholly contained within the weather layer, i.e., no deeper than the expected base of the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O cloud, and not as a result of any detected deep-seated upwelling beneath the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O cloud base. Earth-based observations tracked it over its <span><math><mo>∼</mo></math></span> 2-week lifespan, providing evidence that mesoscale-to-synoptic-scale forcing mechanisms were involved in sustaining it, including the intriguing possibility of a humidity front (‘dryline’), a sharp gradient in the vapor abundance, promoting lift along a concentrated region.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"432 ","pages":"Article 116465"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525000120","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Thunderstorms play a significant role in transporting heat from the deep interior to space on giant planets. We present observations of a 3,400-km wide thunderstorm complex in Jupiter’s North Equatorial Belt (NEB) during the 38th periapse of the Juno spacecraft on 29 Nov. 2021. Data were acquired by the Microwave Radiometer (MWR), the visible light JunoCam instrument, the Jovian InfraRed Auroral Mapper (JIRAM), and from supporting Earth-based imaging. This was the first time Juno was able to observe a thunderstorm at suitably low emission angles with multiple instruments at close range (5,690 km), making it the most comprehensive close-up assessment of a Jovian thunderstorm to date. Lightning detection confirmed the Storm’s vigorous convective nature. MWR brightness temperatures indicate this Storm appears to be wholly contained within the weather layer, i.e., no deeper than the expected base of the HO cloud, and not as a result of any detected deep-seated upwelling beneath the HO cloud base. Earth-based observations tracked it over its 2-week lifespan, providing evidence that mesoscale-to-synoptic-scale forcing mechanisms were involved in sustaining it, including the intriguing possibility of a humidity front (‘dryline’), a sharp gradient in the vapor abundance, promoting lift along a concentrated region.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.