Schur powers of the cokernel of a graded morphism

IF 0.7 2区 数学 Q2 MATHEMATICS
Jan O. Kleppe , Rosa M. Miró-Roig
{"title":"Schur powers of the cokernel of a graded morphism","authors":"Jan O. Kleppe ,&nbsp;Rosa M. Miró-Roig","doi":"10.1016/j.jpaa.2025.107902","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>φ</mi><mo>:</mo><mi>F</mi><mo>⟶</mo><mi>G</mi></math></span> be a graded morphism between free <em>R</em>-modules of rank <em>t</em> and <span><math><mi>t</mi><mo>+</mo><mi>c</mi><mo>−</mo><mn>1</mn></math></span>, respectively, and let <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>φ</mi><mo>)</mo></math></span> be the ideal generated by the <span><math><mi>j</mi><mo>×</mo><mi>j</mi></math></span> minors of a matrix representing <em>φ</em>. In this paper: (1) We show that the canonical module of <span><math><mi>R</mi><mo>/</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>φ</mi><mo>)</mo></math></span> is up to twist equal to a suitable Schur power <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>I</mi></mrow></msup><mi>M</mi></math></span> of <span><math><mi>M</mi><mo>=</mo><mi>coker</mi><mo>(</mo><msup><mrow><mi>φ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>; thus equal to <span><math><msup><mrow><mo>∧</mo></mrow><mrow><mi>t</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>j</mi></mrow></msup><mi>M</mi></math></span> if <span><math><mi>c</mi><mo>=</mo><mn>2</mn></math></span> in which case we find a minimal free <em>R</em>-resolution of <span><math><msup><mrow><mo>∧</mo></mrow><mrow><mi>t</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>j</mi></mrow></msup><mi>M</mi></math></span> for any <em>j</em>, (2) For <span><math><mi>c</mi><mo>=</mo><mn>3</mn></math></span>, we construct a free <em>R</em>-resolution of <span><math><msup><mrow><mo>∧</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>M</mi></math></span> which starts almost minimally (i.e. the first three terms are minimal up to a precise summand), and (3) For <span><math><mi>c</mi><mo>≥</mo><mn>4</mn></math></span>, we construct under a certain depth condition the first three terms of a free <em>R</em>-resolution of <span><math><msup><mrow><mo>∧</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>M</mi></math></span> which are minimal up to a precise summand. As a byproduct we answer the first open case of a question posed by Buchsbaum and Eisenbud in <span><span>[2, pg. 299]</span></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 2","pages":"Article 107902"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000416","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let φ:FG be a graded morphism between free R-modules of rank t and t+c1, respectively, and let Ij(φ) be the ideal generated by the j×j minors of a matrix representing φ. In this paper: (1) We show that the canonical module of R/Ij(φ) is up to twist equal to a suitable Schur power ΣIM of M=coker(φ); thus equal to t+1jM if c=2 in which case we find a minimal free R-resolution of t+1jM for any j, (2) For c=3, we construct a free R-resolution of 2M which starts almost minimally (i.e. the first three terms are minimal up to a precise summand), and (3) For c4, we construct under a certain depth condition the first three terms of a free R-resolution of 2M which are minimal up to a precise summand. As a byproduct we answer the first open case of a question posed by Buchsbaum and Eisenbud in [2, pg. 299].
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信