Fourier transform infrared spectroscopy characterization of aging properties of graphene oxide modified asphalt binder

IF 3.2 3区 材料科学 Q2 ENGINEERING, CHEMICAL
Teng Li , Kang Jiang , Kefei Liu , Quan Li
{"title":"Fourier transform infrared spectroscopy characterization of aging properties of graphene oxide modified asphalt binder","authors":"Teng Li ,&nbsp;Kang Jiang ,&nbsp;Kefei Liu ,&nbsp;Quan Li","doi":"10.1016/j.ijadhadh.2025.103974","DOIUrl":null,"url":null,"abstract":"<div><div>The fundamental reason why thermal-oxidative aging can greatly affect the physical properties, mechanical properties, rheological properties and durability of asphalt is that the molecular structure and colloidal structure of asphalt are changed due to volatilization, oxidation and spatial hardening. To study the possible chemical changes of graphene oxide (GO) modified asphalt after aging and reveal its action mechanism, this study analyzed how GO changes the process of thermal-oxidative aging of asphalt from the perspective of molecular structure, and evaluated the aging properties of GO modified asphalt by testing the content change of each characteristic functional group in asphalt after thermal-oxidative aging. The results show that GO can significantly increase the content of amide groups (0.0018 %) in the base asphalt, which in turn enhances the adhesion and toughness of asphalt, reduces the brittleness of asphalt and improves the bearing strength. The addition of GO effectively inhibited the increase of carboxylic acid and ketone content in asphalt caused by aging. Amide is the aging product of asphalt exposed to air, and the presence of amide promotes the formation of hydrogen bonds, which is more conducive to the miscibility of GO and asphalt. The modification effect of GO on base asphalt is better than SBS-modified asphalt. The results of AFM show that GO-modified asphalt has a better proportion of components and a more stable colloidal structure, and the adhesion performance of GO-modified asphalt is significantly improved. GO can obviously improve the aging resistance and slow down the aging rate of asphalt, indicating that GO can improve the pavement performance and extend the service life of asphalt pavement.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"139 ","pages":"Article 103974"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749625000417","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fundamental reason why thermal-oxidative aging can greatly affect the physical properties, mechanical properties, rheological properties and durability of asphalt is that the molecular structure and colloidal structure of asphalt are changed due to volatilization, oxidation and spatial hardening. To study the possible chemical changes of graphene oxide (GO) modified asphalt after aging and reveal its action mechanism, this study analyzed how GO changes the process of thermal-oxidative aging of asphalt from the perspective of molecular structure, and evaluated the aging properties of GO modified asphalt by testing the content change of each characteristic functional group in asphalt after thermal-oxidative aging. The results show that GO can significantly increase the content of amide groups (0.0018 %) in the base asphalt, which in turn enhances the adhesion and toughness of asphalt, reduces the brittleness of asphalt and improves the bearing strength. The addition of GO effectively inhibited the increase of carboxylic acid and ketone content in asphalt caused by aging. Amide is the aging product of asphalt exposed to air, and the presence of amide promotes the formation of hydrogen bonds, which is more conducive to the miscibility of GO and asphalt. The modification effect of GO on base asphalt is better than SBS-modified asphalt. The results of AFM show that GO-modified asphalt has a better proportion of components and a more stable colloidal structure, and the adhesion performance of GO-modified asphalt is significantly improved. GO can obviously improve the aging resistance and slow down the aging rate of asphalt, indicating that GO can improve the pavement performance and extend the service life of asphalt pavement.
氧化石墨烯改性沥青粘结剂老化性能的傅里叶变换红外光谱表征
热氧化老化之所以能极大地影响沥青的物理性能、力学性能、流变性能和耐久性,根本原因是沥青的分子结构和胶体结构因挥发、氧化和空间硬化而发生变化。为了研究氧化石墨烯(GO)改性沥青老化后可能发生的化学变化,揭示其作用机理,本研究从分子结构角度分析了氧化石墨烯如何改变沥青热氧化老化过程,并通过测试沥青中各特征官能团在热氧化老化后的含量变化来评价氧化石墨烯改性沥青的老化性能。结果表明:氧化石墨烯能显著提高基础沥青中酰胺基团的含量(0.0018%),从而增强沥青的附着力和韧性,降低沥青的脆性,提高沥青的承载强度。氧化石墨烯的加入有效抑制了老化引起的沥青中羧酸和酮类含量的增加。酰胺是沥青暴露于空气中的老化产物,酰胺的存在促进了氢键的形成,更有利于GO与沥青的混溶。GO对基础沥青的改性效果优于sbs改性沥青。AFM结果表明,氧化石墨烯改性沥青组分比例更好,胶体结构更稳定,粘接性能显著提高。氧化石墨烯可以明显提高沥青的抗老化性能,减缓沥青的老化速度,表明氧化石墨烯可以改善沥青路面的使用性能,延长沥青路面的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Adhesion and Adhesives
International Journal of Adhesion and Adhesives 工程技术-材料科学:综合
CiteScore
6.90
自引率
8.80%
发文量
200
审稿时长
8.3 months
期刊介绍: The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信