{"title":"Unique determination of cost functions in a multipopulation mean field game model","authors":"Kui Ren , Nathan Soedjak , Kewei Wang","doi":"10.1016/j.jde.2025.02.037","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies an inverse problem for a multipopulation mean field game (MFG) system where the objective is to reconstruct the running and terminal cost functions of the system that couples the dynamics of different populations. We derive uniqueness results for the inverse problem with different types of available data. In particular, we show that it is possible to uniquely reconstruct some simplified forms of the cost functions from data measured only on a single population component under mild additional assumptions on the coupling mechanism. The proofs are based on the standard multilinearization technique that allows us to reduce the inverse problems into simplified forms.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"427 ","pages":"Pages 843-867"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001561","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies an inverse problem for a multipopulation mean field game (MFG) system where the objective is to reconstruct the running and terminal cost functions of the system that couples the dynamics of different populations. We derive uniqueness results for the inverse problem with different types of available data. In particular, we show that it is possible to uniquely reconstruct some simplified forms of the cost functions from data measured only on a single population component under mild additional assumptions on the coupling mechanism. The proofs are based on the standard multilinearization technique that allows us to reduce the inverse problems into simplified forms.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics