Establishment of endogenous canine MUC1 knock-out MDCKII cells using CRISPR-Cas9 and evaluation of drug permeation

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Hisanao Kishimoto , Kaori Miyazaki , Moeko Omori , Kei Higuchi , Yoshiyuki Shirasaka , Katsuhisa Inoue
{"title":"Establishment of endogenous canine MUC1 knock-out MDCKII cells using CRISPR-Cas9 and evaluation of drug permeation","authors":"Hisanao Kishimoto ,&nbsp;Kaori Miyazaki ,&nbsp;Moeko Omori ,&nbsp;Kei Higuchi ,&nbsp;Yoshiyuki Shirasaka ,&nbsp;Katsuhisa Inoue","doi":"10.1016/j.dmpk.2025.101051","DOIUrl":null,"url":null,"abstract":"<div><div>Most orally administered drugs are absorbed by simple diffusion across the intestinal epithelium. Monolayers of MDCKII cells and parallel artificial membrane permeability assay are widely used to evaluate simple diffusion as an <em>in vitro</em> model; however, these models do not account for the contribution of mucus glycoprotein, which may play a significant role in drug permeation. We focused on the role of MUC1, a membrane-bound mucin that is found on the luminal surface of the gastrointestinal epithelium, in the simple diffusion of lipophilic drugs. We generated endogenous canine Mdr1 (cMdr1) and Muc1 (cMuc1) knock-out MDCKII cells by genomic editing and evaluated the effect of cMuc1 on the simple diffusion of various drugs. The absence of cMuc1 significantly increased the membrane permeation of lipophilic drugs, such as griseofulvin as well as paclitaxel and rhodamine 123, substrates of the MDR1 efflux transporter, which suggests that cMuc1 is one of the key factors that modulate the membrane permeation of these drugs. Taken together, we successfully established MDCKII cell lines with a complete knock-out of endogenous cMuc1 and cMdr1 expressions. This provides a novel <em>in vitro</em> model system for studying the mechanisms underlying drug absorption and transport, with potential applications for drug development.</div></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"61 ","pages":"Article 101051"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347436725000011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Most orally administered drugs are absorbed by simple diffusion across the intestinal epithelium. Monolayers of MDCKII cells and parallel artificial membrane permeability assay are widely used to evaluate simple diffusion as an in vitro model; however, these models do not account for the contribution of mucus glycoprotein, which may play a significant role in drug permeation. We focused on the role of MUC1, a membrane-bound mucin that is found on the luminal surface of the gastrointestinal epithelium, in the simple diffusion of lipophilic drugs. We generated endogenous canine Mdr1 (cMdr1) and Muc1 (cMuc1) knock-out MDCKII cells by genomic editing and evaluated the effect of cMuc1 on the simple diffusion of various drugs. The absence of cMuc1 significantly increased the membrane permeation of lipophilic drugs, such as griseofulvin as well as paclitaxel and rhodamine 123, substrates of the MDR1 efflux transporter, which suggests that cMuc1 is one of the key factors that modulate the membrane permeation of these drugs. Taken together, we successfully established MDCKII cell lines with a complete knock-out of endogenous cMuc1 and cMdr1 expressions. This provides a novel in vitro model system for studying the mechanisms underlying drug absorption and transport, with potential applications for drug development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
9.50%
发文量
50
审稿时长
69 days
期刊介绍: DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows: - Drug metabolism / Biotransformation - Pharmacokinetics and pharmacodynamics - Toxicokinetics and toxicodynamics - Drug-drug interaction / Drug-food interaction - Mechanism of drug absorption and disposition (including transporter) - Drug delivery system - Clinical pharmacy and pharmacology - Analytical method - Factors affecting drug metabolism and transport - Expression of genes for drug-metabolizing enzymes and transporters - Pharmacogenetics and pharmacogenomics - Pharmacoepidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信