Computing skeleton-based handle/tunnel loops

IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Hayam Abdelrahman, Yiying Tong
{"title":"Computing skeleton-based handle/tunnel loops","authors":"Hayam Abdelrahman,&nbsp;Yiying Tong","doi":"10.1016/j.cag.2025.104177","DOIUrl":null,"url":null,"abstract":"<div><div>Finding surface loops around narrow sections of a surface is widely used as a prepossessing step in various applications such as segmentation, shape analysis, path planning, and robotics. A common approach to locating such loops is based on surface topology. However, such geodesic loops also exist on topologically trivial genus-0 surfaces, where all such loops can continuously deform to a point. While a few existing 3D geometry-aware topological approaches may succeed in detecting such additional narrow loops, their construction can be cumbersome. To extend beyond the limitations of topologically nontrivial independent loops while remaining efficient, we propose a novel approach that leverages the shape’s skeleton for computing surface loops of handle or tunnel type. Given a closed surface mesh, our algorithm produces a practically comprehensive set of loops encircling narrow regions of the volume inside or outside the surface. Notably, our approach streamlines and expedites computations by accepting a skeleton, a 1D representation of the shape, as part of the input. Specifically, handle-type loops are discovered by examining a small subset of the skeleton points as candidate loop centers, while tunnel-type loops are identified by examining only the high-valence skeleton points.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"127 ","pages":"Article 104177"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325000160","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Finding surface loops around narrow sections of a surface is widely used as a prepossessing step in various applications such as segmentation, shape analysis, path planning, and robotics. A common approach to locating such loops is based on surface topology. However, such geodesic loops also exist on topologically trivial genus-0 surfaces, where all such loops can continuously deform to a point. While a few existing 3D geometry-aware topological approaches may succeed in detecting such additional narrow loops, their construction can be cumbersome. To extend beyond the limitations of topologically nontrivial independent loops while remaining efficient, we propose a novel approach that leverages the shape’s skeleton for computing surface loops of handle or tunnel type. Given a closed surface mesh, our algorithm produces a practically comprehensive set of loops encircling narrow regions of the volume inside or outside the surface. Notably, our approach streamlines and expedites computations by accepting a skeleton, a 1D representation of the shape, as part of the input. Specifically, handle-type loops are discovered by examining a small subset of the skeleton points as candidate loop centers, while tunnel-type loops are identified by examining only the high-valence skeleton points.

Abstract Image

计算基于骨架的手柄/隧道循环
在表面的狭窄部分周围寻找表面环被广泛用作各种应用中的前置步骤,例如分割,形状分析,路径规划和机器人。定位这种环路的一种常用方法是基于表面拓扑结构。然而,这样的测地线回路也存在于拓扑平凡的属0表面上,其中所有这样的回路都可以连续变形到一个点。虽然一些现有的三维几何感知拓扑方法可以成功地检测到这种额外的窄环路,但它们的构造可能很麻烦。为了在保持效率的同时超越拓扑非平凡独立循环的限制,我们提出了一种利用形状骨架计算手柄或隧道型表面循环的新方法。给定一个封闭的表面网格,我们的算法产生了一组几乎全面的环,环绕着表面内外体积的狭窄区域。值得注意的是,我们的方法通过接受骨架(形状的一维表示)作为输入的一部分来简化和加速计算。具体来说,通过检查作为候选环中心的一小部分骨架点来发现手柄型环,而仅通过检查高价骨架点来识别隧道型环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信