Potassium organomineral fertilizer alters the microbiome of a sandy loam tropical soil

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Caroline Figueiredo Oliveira , Lucas William Mendes , Luís Reynaldo Ferracciú Alleoni
{"title":"Potassium organomineral fertilizer alters the microbiome of a sandy loam tropical soil","authors":"Caroline Figueiredo Oliveira ,&nbsp;Lucas William Mendes ,&nbsp;Luís Reynaldo Ferracciú Alleoni","doi":"10.1016/j.apsoil.2025.105960","DOIUrl":null,"url":null,"abstract":"<div><div>Soil fertility depends on a series of physical, chemical, and biological factors that interact to create an environment favorable to plant growth. In conditions of low fertility, mineral and organic fertilizers are commonly used in agricultural systems. However, studies on the impact of these fertilizers on the soil microbiota are limited, particularly those focusing on fertilizers containing potassium, a crucial plant macronutrient. In this study, we evaluated how potassium organomineral fertilizer (OMF) influences soil bacterial and fungal communities compared to potassium chloride (KCl), a conventional agricultural source in the humid tropics. Both the conventional particle size and the ground form used to produce OMF were examined. Samples of a sandy loam Typic Hapludox were incubated with the fertilizers, and the bacterial and fungal communities were assessed through sequencing of the 16S rRNA and ITS regions, respectively. OMF reduced the richness and diversity of bacterial and fungal communities, and this effect was attributed to the nutrient composition of OMF, rich in calcium and magnesium, which were absent in other treatments. Different fertilizers selected specific bacterial and fungal phyla, demonstrating their ability to influence community structure. Notably, OMF favored Proteobacteria and Bacteroidota, while KCl increased the abundance of Actinobacteriota and Firmicutes. The granulometry of KCl also influenced the soil microbial community, with smaller granules having greater soil contact, thus affecting chemical conditions and microbial composition. The OMF treatment enriched several bacterial genera, including <em>Microvirga</em>, <em>Phenylobacterium</em>, and <em>Azospirillum</em>, while increasing only the fungal genus <em>Ascobolus</em>. While OMF application reduced microbial richness and diversity, it favored specific microbial groups beneficial for agriculture, such as those involved in organic compound degradation and nitrogen cycling. These compositional changes may have significant implications for nutrient cycling and soil organic matter decomposition, highlighting the need for further studies to understand the underlying mechanisms and broader ecological impacts.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"207 ","pages":"Article 105960"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325000988","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil fertility depends on a series of physical, chemical, and biological factors that interact to create an environment favorable to plant growth. In conditions of low fertility, mineral and organic fertilizers are commonly used in agricultural systems. However, studies on the impact of these fertilizers on the soil microbiota are limited, particularly those focusing on fertilizers containing potassium, a crucial plant macronutrient. In this study, we evaluated how potassium organomineral fertilizer (OMF) influences soil bacterial and fungal communities compared to potassium chloride (KCl), a conventional agricultural source in the humid tropics. Both the conventional particle size and the ground form used to produce OMF were examined. Samples of a sandy loam Typic Hapludox were incubated with the fertilizers, and the bacterial and fungal communities were assessed through sequencing of the 16S rRNA and ITS regions, respectively. OMF reduced the richness and diversity of bacterial and fungal communities, and this effect was attributed to the nutrient composition of OMF, rich in calcium and magnesium, which were absent in other treatments. Different fertilizers selected specific bacterial and fungal phyla, demonstrating their ability to influence community structure. Notably, OMF favored Proteobacteria and Bacteroidota, while KCl increased the abundance of Actinobacteriota and Firmicutes. The granulometry of KCl also influenced the soil microbial community, with smaller granules having greater soil contact, thus affecting chemical conditions and microbial composition. The OMF treatment enriched several bacterial genera, including Microvirga, Phenylobacterium, and Azospirillum, while increasing only the fungal genus Ascobolus. While OMF application reduced microbial richness and diversity, it favored specific microbial groups beneficial for agriculture, such as those involved in organic compound degradation and nitrogen cycling. These compositional changes may have significant implications for nutrient cycling and soil organic matter decomposition, highlighting the need for further studies to understand the underlying mechanisms and broader ecological impacts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信