The impacts of shrub branch shelter and nitrogen addition on soil microbial activity and plant litter decomposition in a desert steppe

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Xiongkui Lin , Rebecca L. Schneider , Stephen J. Morreale , Hongmei Wang , Jianping Li , Zhigang Li
{"title":"The impacts of shrub branch shelter and nitrogen addition on soil microbial activity and plant litter decomposition in a desert steppe","authors":"Xiongkui Lin ,&nbsp;Rebecca L. Schneider ,&nbsp;Stephen J. Morreale ,&nbsp;Hongmei Wang ,&nbsp;Jianping Li ,&nbsp;Zhigang Li","doi":"10.1016/j.apsoil.2025.105956","DOIUrl":null,"url":null,"abstract":"<div><div>Shrub encroachment and nitrogen (N) deposition have become two critical factors that cause global grassland ecosystems degradation. However, the combined effects of shrub branch shelter and N deposition on soil microbial activity and litter decomposition in grasslands remain obscure. This study adopted four branch shelter levels of 0 % (no shelter), 30 %, 50 % and 70 % as the main plots, and four N additions including 0 g m<sup>−2</sup> a<sup>−1</sup>, 10 g m<sup>−2</sup> a<sup>−1</sup>, 20 g m<sup>−2</sup> a<sup>−1</sup> and 40 g m<sup>−2</sup> a<sup>−1</sup> as subplots in a Northwest China desert steppe. Subsequently, soil temperature, soil moisture, pH, N content, activities of C and N cycling-related enzymes, and microbial community structure between 0 and 5 cm were determined post 2 years, and litter decomposition from dominant plants was also determined. The results demonstrated that N additions increased the soil inorganic N content, but decreased soil pH value. However, branch shelters enhanced soil moisture, yet had no effect on soil pH value and N content. As results, N additions inhibited soil N cycling-related enzyme activities, but branch shelters accelerated the activities of the most tested extracellular enzymes. Branch shelters also presented opposite potentials to N additions in affecting soil microbial community structure. Overall, shrub shelters counteracted the negative effects of nitrogen deposition on soil enzyme activity and microbial community structure. Consequently, both branch shelter and N addition promoted litter decomposition. Therefore, branch shelter could be used as feasible measures to restore degraded grasslands caused by shrub encroachment and N deposition in arid and semiarid areas.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"207 ","pages":"Article 105956"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325000940","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Shrub encroachment and nitrogen (N) deposition have become two critical factors that cause global grassland ecosystems degradation. However, the combined effects of shrub branch shelter and N deposition on soil microbial activity and litter decomposition in grasslands remain obscure. This study adopted four branch shelter levels of 0 % (no shelter), 30 %, 50 % and 70 % as the main plots, and four N additions including 0 g m−2 a−1, 10 g m−2 a−1, 20 g m−2 a−1 and 40 g m−2 a−1 as subplots in a Northwest China desert steppe. Subsequently, soil temperature, soil moisture, pH, N content, activities of C and N cycling-related enzymes, and microbial community structure between 0 and 5 cm were determined post 2 years, and litter decomposition from dominant plants was also determined. The results demonstrated that N additions increased the soil inorganic N content, but decreased soil pH value. However, branch shelters enhanced soil moisture, yet had no effect on soil pH value and N content. As results, N additions inhibited soil N cycling-related enzyme activities, but branch shelters accelerated the activities of the most tested extracellular enzymes. Branch shelters also presented opposite potentials to N additions in affecting soil microbial community structure. Overall, shrub shelters counteracted the negative effects of nitrogen deposition on soil enzyme activity and microbial community structure. Consequently, both branch shelter and N addition promoted litter decomposition. Therefore, branch shelter could be used as feasible measures to restore degraded grasslands caused by shrub encroachment and N deposition in arid and semiarid areas.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信