Comammox Nitrospira and ammonia-oxidizing bacteria are metabolically active in a subtropical estuarine wetland

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE
Mengmeng Feng , Yongxin Lin , Guiping Ye , Zi-Yang He , Dong Zhu , Hang-Wei Hu , Yuheng Cheng , Fengyi Han , Ping Yang , Ji-Zheng He
{"title":"Comammox Nitrospira and ammonia-oxidizing bacteria are metabolically active in a subtropical estuarine wetland","authors":"Mengmeng Feng ,&nbsp;Yongxin Lin ,&nbsp;Guiping Ye ,&nbsp;Zi-Yang He ,&nbsp;Dong Zhu ,&nbsp;Hang-Wei Hu ,&nbsp;Yuheng Cheng ,&nbsp;Fengyi Han ,&nbsp;Ping Yang ,&nbsp;Ji-Zheng He","doi":"10.1016/j.apsoil.2025.105964","DOIUrl":null,"url":null,"abstract":"<div><div>Plant species profoundly influence soil microorganisms, yet their impact on active ammonia-oxidizing microorganisms remains largely unclear in subtropical estuarine wetlands. Here, we employed DNA stable isotope probing (DNA-SIP) technique to identify the active ammonia oxidizers under two typical plant species, <em>Phragmites australis</em> and <em>Spartina alterniflora</em>, as well as on a bare tidal flat in the Min River estuary. Our results revealed that comammox <em>Nitrospira</em> and ammonia-oxidizing bacteria (AOB) rather than archaea (AOA) were metabolically active in the <em>P. australis</em> and bare tidal flat soils. However, in <em>S. alterniflora</em> soils, the activity of ammonia oxidizers was inhibited, highlighting the critical role of plant species in shaping their community. The active ammonia oxidizers were primarily dominated by <em>Nitrosomonas</em> for AOB and clade A.1 for comammox <em>Nitrospira</em>. In comparison, bare tidal flat soils had a lower proportion of <em>Nitrosospira</em> and a higher relative abundance of comammox <em>Nitrospira</em> clade A.2 than those associated with <em>P. australis</em>. Taken together, our findings emphasize the importance of AOB and comammox <em>Nitrospira</em>, rather than AOA, in the nitrification processes within coastal wetlands, and underscore the critical role of plant species as a mediator.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"207 ","pages":"Article 105964"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325001027","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Plant species profoundly influence soil microorganisms, yet their impact on active ammonia-oxidizing microorganisms remains largely unclear in subtropical estuarine wetlands. Here, we employed DNA stable isotope probing (DNA-SIP) technique to identify the active ammonia oxidizers under two typical plant species, Phragmites australis and Spartina alterniflora, as well as on a bare tidal flat in the Min River estuary. Our results revealed that comammox Nitrospira and ammonia-oxidizing bacteria (AOB) rather than archaea (AOA) were metabolically active in the P. australis and bare tidal flat soils. However, in S. alterniflora soils, the activity of ammonia oxidizers was inhibited, highlighting the critical role of plant species in shaping their community. The active ammonia oxidizers were primarily dominated by Nitrosomonas for AOB and clade A.1 for comammox Nitrospira. In comparison, bare tidal flat soils had a lower proportion of Nitrosospira and a higher relative abundance of comammox Nitrospira clade A.2 than those associated with P. australis. Taken together, our findings emphasize the importance of AOB and comammox Nitrospira, rather than AOA, in the nitrification processes within coastal wetlands, and underscore the critical role of plant species as a mediator.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信