Jilin Lei , Donghan Yang , Yingying Sun , Saihong Wang , Qianyi Fan , Junhui Yin , Rui Liu , Qing Chen
{"title":"Ammonia-oxidizing microorganisms overwhelm denitrifiers in determining the efficacy of DMPP in upland soils","authors":"Jilin Lei , Donghan Yang , Yingying Sun , Saihong Wang , Qianyi Fan , Junhui Yin , Rui Liu , Qing Chen","doi":"10.1016/j.apsoil.2025.105955","DOIUrl":null,"url":null,"abstract":"<div><div>The use of nitrification inhibitors (NIs) like 3,4-dimethylpyrazole phosphate (DMPP) in agricultural systems can effectively reduce nitrous oxide (N<sub>2</sub>O) emissions and nitrate (NO<sub>3</sub><sup>−</sup>) leaching, but their effectiveness varies across different soils. This microcosm experiment evaluated the efficacy of DMPP and its impact on soil microbial communities in four upland soils in Northern China (Tianshui: TS, Shihezi: SHZ, Heze: HZ and Daxing: DX). Results indicated that DMPP exhibits varying inhibitory effects on N<sub>2</sub>O emissions across different soils. The key microbes mediating N<sub>2</sub>O emissions, particularly ammonia-oxidizing bacteria (AOB), are the primary contributors to this variability. Specifically, DMPP led to a substantial reduction in N<sub>2</sub>O emissions in TS soil, inhibiting 81.3 % of emissions by suppressing both ammonia-oxidizing bacteria (AOB) and archaea (AOA). In SHZ soil, a 56.5 % reduction was observed, primarily attributed to decreased AOB <em>amo</em>A abundance. DX soil exhibited a 48.6 % reduction, linked to decreased AOA <em>amo</em>A abundance and an increase in <em>nos</em>Z-N<sub>2</sub>O reducers. Conversely, HZ soil showed the lowest reduction at 27.7 %, where DMPP stimulated the abundance of <em>nir</em>S-type denitrifiers while inhibiting unclassified Nitrosomonadales, the dominant AOB genus, which correlated positively with the net nitrification rate. Additionally, DMPP positively influenced norank Crenarchaeota-AOA in TS soil, and <em>Bradyrhizobium</em>-<em>nos</em>Z and <em>Saccharothrix</em>-<em>nar</em>G in HZ soil, all negatively associated with N<sub>2</sub>O emissions. Soil properties such as total nitrogen, organic matter (SOM), ammonium (NH<sub>4</sub><sup>+</sup>), pH, and available phosphorus (AP) levels significantly shaped microbial responses to DMPP. These findings underscore the importance of soil-specific characteristics in optimizing DMPP application strategies for reducing N<sub>2</sub>O emissions in upland soils.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"207 ","pages":"Article 105955"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325000939","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The use of nitrification inhibitors (NIs) like 3,4-dimethylpyrazole phosphate (DMPP) in agricultural systems can effectively reduce nitrous oxide (N2O) emissions and nitrate (NO3−) leaching, but their effectiveness varies across different soils. This microcosm experiment evaluated the efficacy of DMPP and its impact on soil microbial communities in four upland soils in Northern China (Tianshui: TS, Shihezi: SHZ, Heze: HZ and Daxing: DX). Results indicated that DMPP exhibits varying inhibitory effects on N2O emissions across different soils. The key microbes mediating N2O emissions, particularly ammonia-oxidizing bacteria (AOB), are the primary contributors to this variability. Specifically, DMPP led to a substantial reduction in N2O emissions in TS soil, inhibiting 81.3 % of emissions by suppressing both ammonia-oxidizing bacteria (AOB) and archaea (AOA). In SHZ soil, a 56.5 % reduction was observed, primarily attributed to decreased AOB amoA abundance. DX soil exhibited a 48.6 % reduction, linked to decreased AOA amoA abundance and an increase in nosZ-N2O reducers. Conversely, HZ soil showed the lowest reduction at 27.7 %, where DMPP stimulated the abundance of nirS-type denitrifiers while inhibiting unclassified Nitrosomonadales, the dominant AOB genus, which correlated positively with the net nitrification rate. Additionally, DMPP positively influenced norank Crenarchaeota-AOA in TS soil, and Bradyrhizobium-nosZ and Saccharothrix-narG in HZ soil, all negatively associated with N2O emissions. Soil properties such as total nitrogen, organic matter (SOM), ammonium (NH4+), pH, and available phosphorus (AP) levels significantly shaped microbial responses to DMPP. These findings underscore the importance of soil-specific characteristics in optimizing DMPP application strategies for reducing N2O emissions in upland soils.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.