{"title":"Revolutionizing viral resistance strategies in rice: Evolution from RNAi to precision genome editing","authors":"Gaurav Kumar, Indranil Dasgupta","doi":"10.1016/j.virol.2025.110449","DOIUrl":null,"url":null,"abstract":"<div><div>Rice viruses are a major threat to global food security, causing significant yield losses in key rice growing regions. RNA interference (RNAi) has been crucial in engineering viral resistance in rice by silencing essential viral genes. However, the advent of genome editing, especially CRISPR/Cas, has transformed this field by allowing precise alterations of viral susceptibility genes, offering more durable and targeted resistance. This review examines the advances in RNAi strategies and the shift toward CRISPR/Cas technologies, highlighting how genome editing addresses RNAi's limitations, such as broader viral strain coverage and stronger resistance. These tools, integrated with advanced breeding methods, promise to develop rice varieties with durable, broad-spectrum virus resistance, contributing to sustainable rice production and food security.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"604 ","pages":"Article 110449"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225000613","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rice viruses are a major threat to global food security, causing significant yield losses in key rice growing regions. RNA interference (RNAi) has been crucial in engineering viral resistance in rice by silencing essential viral genes. However, the advent of genome editing, especially CRISPR/Cas, has transformed this field by allowing precise alterations of viral susceptibility genes, offering more durable and targeted resistance. This review examines the advances in RNAi strategies and the shift toward CRISPR/Cas technologies, highlighting how genome editing addresses RNAi's limitations, such as broader viral strain coverage and stronger resistance. These tools, integrated with advanced breeding methods, promise to develop rice varieties with durable, broad-spectrum virus resistance, contributing to sustainable rice production and food security.
期刊介绍:
Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.