Revisiting the roles of trypsin in the productive infection of porcine deltacoronavirus in porcine-derived cells

IF 2.8 3区 医学 Q3 VIROLOGY
Wenwen Xiao , Zhuang Li , Chaoqun Chen , Yuting Shi , Puxian Fang , Shaobo Xiao , Liurong Fang
{"title":"Revisiting the roles of trypsin in the productive infection of porcine deltacoronavirus in porcine-derived cells","authors":"Wenwen Xiao ,&nbsp;Zhuang Li ,&nbsp;Chaoqun Chen ,&nbsp;Yuting Shi ,&nbsp;Puxian Fang ,&nbsp;Shaobo Xiao ,&nbsp;Liurong Fang","doi":"10.1016/j.virol.2025.110453","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus with the potential for interspecies transmission. Trypsin has been shown to play a positive role in the isolation and multiplication of PDCoV in vitro, however, the functions of trypsin during PDCoV replication cycle remain controversial. In this study, we revisited the roles of trypsin for PDCoV infection by utilizing two kinds of PDCoV, PDCoV<sup>T+</sup> and PDCoV<sup>T−</sup>, which were prepared in the presence or absence of trypsin, respectively. We found that PDCoV<sup>T+</sup> was able to continuously proliferate in the medium containing trypsin, achieving a higher titer as the infection progress in LLC-PK1 and other tested porcine-derived cells. However, its replication was only transiently improved at 12 hours post-infection, and lower viral titers were observed under trypsin-free culture conditions. Furthermore, the trypsin-mediated enhancement of viral replication could be inhibited by trypsin inhibitor SBTI, suggesting that the second-round viral reproduction of PDCoV<sup>T</sup><sup>+</sup> might be impeded without trypsin. We further investigated the replication dynamics of PDCoV<sup>T−</sup> in LLC-PK1 cells in the presence or absence of trypsin. The results indicated that PDCoV<sup>T−</sup> generated lower viral titers under trypsin-free culture conditions, while the addition of trypsin reverted the infectivity of PDCoV<sup>T−</sup>. Additionally, we demonstrated that trypsin cleaved the PDCoV spike protein, activating viral attachment and internalization. Moreover, trypsin promoted viral replication and release, accelerating PDCoV maturation and facilitating second-round infection. Taken together, this study systematically revaluated and emphasized an essential role of trypsin in PDCoV infection, providing mechanistic insights into the productive infection of PDCoV in porcine-derived cells.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"604 ","pages":"Article 110453"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225000650","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus with the potential for interspecies transmission. Trypsin has been shown to play a positive role in the isolation and multiplication of PDCoV in vitro, however, the functions of trypsin during PDCoV replication cycle remain controversial. In this study, we revisited the roles of trypsin for PDCoV infection by utilizing two kinds of PDCoV, PDCoVT+ and PDCoVT−, which were prepared in the presence or absence of trypsin, respectively. We found that PDCoVT+ was able to continuously proliferate in the medium containing trypsin, achieving a higher titer as the infection progress in LLC-PK1 and other tested porcine-derived cells. However, its replication was only transiently improved at 12 hours post-infection, and lower viral titers were observed under trypsin-free culture conditions. Furthermore, the trypsin-mediated enhancement of viral replication could be inhibited by trypsin inhibitor SBTI, suggesting that the second-round viral reproduction of PDCoVT+ might be impeded without trypsin. We further investigated the replication dynamics of PDCoVT− in LLC-PK1 cells in the presence or absence of trypsin. The results indicated that PDCoVT− generated lower viral titers under trypsin-free culture conditions, while the addition of trypsin reverted the infectivity of PDCoVT−. Additionally, we demonstrated that trypsin cleaved the PDCoV spike protein, activating viral attachment and internalization. Moreover, trypsin promoted viral replication and release, accelerating PDCoV maturation and facilitating second-round infection. Taken together, this study systematically revaluated and emphasized an essential role of trypsin in PDCoV infection, providing mechanistic insights into the productive infection of PDCoV in porcine-derived cells.
重新审视胰蛋白酶在猪源性细胞中猪冠状病毒生产感染中的作用
猪三角冠状病毒(PDCoV)是一种新型肠道冠状病毒,具有种间传播的潜力。胰蛋白酶在体外PDCoV的分离和增殖中发挥了积极作用,但胰蛋白酶在PDCoV复制周期中的作用仍存在争议。在这项研究中,我们利用两种PDCoV, PDCoVT+和PDCoVT−,分别在存在或不存在胰蛋白酶的情况下制备,重新审视了胰蛋白酶在PDCoV感染中的作用。我们发现PDCoVT+能够在含有胰蛋白酶的培养基中持续增殖,随着感染在LLC-PK1和其他测试的猪源性细胞中的进展,达到更高的滴度。然而,在感染后12小时,其复制仅短暂提高,在无胰蛋白酶培养条件下观察到较低的病毒滴度。此外,胰蛋白酶抑制剂SBTI可以抑制胰蛋白酶介导的病毒复制增强,这表明在没有胰蛋白酶的情况下,PDCoVT+的第二轮病毒复制可能受到阻碍。我们进一步研究了在存在或不存在胰蛋白酶的情况下,PDCoVT -在LLC-PK1细胞中的复制动力学。结果表明,在无胰蛋白酶的培养条件下,PDCoVT -产生的病毒滴度较低,而添加胰蛋白酶可以恢复PDCoVT -的感染性。此外,我们还证明胰蛋白酶可以切割PDCoV刺突蛋白,激活病毒的附着和内化。此外,胰蛋白酶促进了病毒的复制和释放,加速了PDCoV的成熟,促进了第二轮感染。综上所述,本研究系统地重新评估并强调了胰蛋白酶在PDCoV感染中的重要作用,为PDCoV在猪源性细胞中的生产感染提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virology
Virology 医学-病毒学
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
50 days
期刊介绍: Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信