Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus Agaricus crocodilinus

IF 2.9 3区 生物学 Q2 MYCOLOGY
Jan Sácký , Veronika Liščáková , Jan Šnábl , Jaroslav Zelenka , Jan Borovička , Tereza Leonhardt , Pavel Kotrba
{"title":"Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus Agaricus crocodilinus","authors":"Jan Sácký ,&nbsp;Veronika Liščáková ,&nbsp;Jan Šnábl ,&nbsp;Jaroslav Zelenka ,&nbsp;Jan Borovička ,&nbsp;Tereza Leonhardt ,&nbsp;Pavel Kotrba","doi":"10.1016/j.funbio.2025.101550","DOIUrl":null,"url":null,"abstract":"<div><div>The gilled mushroom <em>Agaricus crocodilinus</em> (<em>Agaricaceae</em>) analyzed in this study hyperaccumulated Cd and showed common Zn and very low Mn concentrations. To gain an insight into the handling of heavy metals in this saprotrophic species, its two genes of the cation diffusion facilitator (CDF) protein family were isolated, Ac<em>CDF1</em> and Ac<em>CDF2</em>, encoding the membrane transporters of the Zn-CDF and Mn-CDF subfamilies, respectively. When expressed in the model, metal-sensitive yeast, Ac<em>CDF1</em> conferred marked Zn tolerance and promoted the intracellular accumulation of Zn. Green fluorescent protein (GFP) tagging of AcCDF1 visualized the functional protein predominantly in the tonoplast, indicating that AcCDF1 can mediate the transport of Zn into vacuoles, which are used for deposition of excess Zn in most fungi. Ac<em>CDF2</em> conferred a high degree of Mn tolerance to model yeast, in which the transport-active AcCDF2:GFP fusion was localized to the plasma membrane, suggesting a role in Mn export and thus reduced Mn accumulation. Furthermore, the Ac<em>CDF2</em> gene appeared to be Mn-inducible in <em>A. crocodilinus</em>, suggesting an Mn efflux function of AcCDF2. Neither AcCDFs nor the mutant AcCDF1 variants constructed to mimic transmembrane tetrahedral Cd transport sites manifested appreciable Cd-related phenotypes in yeast models, and further efforts are needed to elucidate the mechanism underlying Cd hyperaccumulation in <em>A. crocodilinus</em>.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"129 2","pages":"Article 101550"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614625000169","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gilled mushroom Agaricus crocodilinus (Agaricaceae) analyzed in this study hyperaccumulated Cd and showed common Zn and very low Mn concentrations. To gain an insight into the handling of heavy metals in this saprotrophic species, its two genes of the cation diffusion facilitator (CDF) protein family were isolated, AcCDF1 and AcCDF2, encoding the membrane transporters of the Zn-CDF and Mn-CDF subfamilies, respectively. When expressed in the model, metal-sensitive yeast, AcCDF1 conferred marked Zn tolerance and promoted the intracellular accumulation of Zn. Green fluorescent protein (GFP) tagging of AcCDF1 visualized the functional protein predominantly in the tonoplast, indicating that AcCDF1 can mediate the transport of Zn into vacuoles, which are used for deposition of excess Zn in most fungi. AcCDF2 conferred a high degree of Mn tolerance to model yeast, in which the transport-active AcCDF2:GFP fusion was localized to the plasma membrane, suggesting a role in Mn export and thus reduced Mn accumulation. Furthermore, the AcCDF2 gene appeared to be Mn-inducible in A. crocodilinus, suggesting an Mn efflux function of AcCDF2. Neither AcCDFs nor the mutant AcCDF1 variants constructed to mimic transmembrane tetrahedral Cd transport sites manifested appreciable Cd-related phenotypes in yeast models, and further efforts are needed to elucidate the mechanism underlying Cd hyperaccumulation in A. crocodilinus.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fungal biology
Fungal biology MYCOLOGY-
CiteScore
5.80
自引率
4.00%
发文量
80
审稿时长
49 days
期刊介绍: Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信