Sebin Kim , Chaehyun Kim , Youngwoo Yoo , Young-Joon Kim
{"title":"Accurate low-delay QRS detection algorithm for real-time ECG acquisition in IoT sensors","authors":"Sebin Kim , Chaehyun Kim , Youngwoo Yoo , Young-Joon Kim","doi":"10.1016/j.iot.2025.101537","DOIUrl":null,"url":null,"abstract":"<div><div>QRS detection is crucial for heart function diagnosis and sports science. This paper presents a real-time QRS detection algorithm designed for low-cost wearable embedded platforms, enabling novel applications such as closed-loop stimulation for acute diseases, precise monitoring in sports science, and home health monitoring. This algorithm locates the R-peak in real-time, with a mean delay of 0.405 s, throughout the MIT-BIH dataset. We achieve high accuracy with minimal compromise to computational power or delay, using a two-step, find and validate method. Initially, we identify potential QRS candidates by detecting zero-crossing points through filtering and convolution processes. Next, we validate these candidates by comparing them with previous R-R intervals (RRI), adaptively comparing values to minimize T-wave errors and reject adjacent noise components. We introduced a novel algorithm based on RRI periodicity, simplifying the computational load while enhancing detection accuracy. By using the MIT-BIH dataset, we detected the QRS complexes with a 99.75% accuracy. Furthermore, we embedded the algorithm into an Arm Cortex-M4 microcontroller unit (MCU) with a 64 MHz clock, maintaining identical accuracy. We demonstrate live-stream QRS detection by generating MIT-BIH waveforms using a function generator and processing them with the MCU's on-chip 10-bit analog-to-digital converter (ADC), achieving 99.71% accuracy. Finally, we validate our work with a miniaturized flexible electrocardiogram (ECG) sensor in a form factor of a bandage, wirelessly linked to a smartwatch for real-time ECG monitoring and R-peak detection. A cloud connectivity network is established concluding that this work is suitable for practical monitoring applications.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101537"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000502","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
QRS detection is crucial for heart function diagnosis and sports science. This paper presents a real-time QRS detection algorithm designed for low-cost wearable embedded platforms, enabling novel applications such as closed-loop stimulation for acute diseases, precise monitoring in sports science, and home health monitoring. This algorithm locates the R-peak in real-time, with a mean delay of 0.405 s, throughout the MIT-BIH dataset. We achieve high accuracy with minimal compromise to computational power or delay, using a two-step, find and validate method. Initially, we identify potential QRS candidates by detecting zero-crossing points through filtering and convolution processes. Next, we validate these candidates by comparing them with previous R-R intervals (RRI), adaptively comparing values to minimize T-wave errors and reject adjacent noise components. We introduced a novel algorithm based on RRI periodicity, simplifying the computational load while enhancing detection accuracy. By using the MIT-BIH dataset, we detected the QRS complexes with a 99.75% accuracy. Furthermore, we embedded the algorithm into an Arm Cortex-M4 microcontroller unit (MCU) with a 64 MHz clock, maintaining identical accuracy. We demonstrate live-stream QRS detection by generating MIT-BIH waveforms using a function generator and processing them with the MCU's on-chip 10-bit analog-to-digital converter (ADC), achieving 99.71% accuracy. Finally, we validate our work with a miniaturized flexible electrocardiogram (ECG) sensor in a form factor of a bandage, wirelessly linked to a smartwatch for real-time ECG monitoring and R-peak detection. A cloud connectivity network is established concluding that this work is suitable for practical monitoring applications.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.