Physics-informed explainable encoder-decoder deep learning for predictive estimation of building carbon emissions

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Chao Chen , Limao Zhang , Cheng Zhou , Yongqiang Luo
{"title":"Physics-informed explainable encoder-decoder deep learning for predictive estimation of building carbon emissions","authors":"Chao Chen ,&nbsp;Limao Zhang ,&nbsp;Cheng Zhou ,&nbsp;Yongqiang Luo","doi":"10.1016/j.rser.2025.115478","DOIUrl":null,"url":null,"abstract":"<div><div>Building decarbonization is beneficial to improve energy efficiency and mitigate climate change worldwide, and it is necessary to accurately investigate building carbon emissions and identify the potential factors. A crucial challenge is that pioneer studies rarely explore the correlations between controllable parameters and building carbon emissions and are unable to estimate carbon emissions comprehensively. In this context, this work proposes a physics-informed encoder-decoder framework for predictive carbon emissions estimation. The input variables are transformed into sequences to extract essential features and time information in the encoder, where the decoder receives the sequence and makes a prediction. Simultaneously, the control-oriented physical laws are explored and integrated to update the conventional loss function. The proposed model has been applied to a high-rise commercial building in China. Results reveal that: (1) The model sees a significant prediction improvement by 9.24 % after considering physical laws and shows outstanding robustness under five dataset conditions; (2) The R<sup>2</sup> for carbon emissions prediction is 0.963, while the accuracy for anomaly detection is 0.963; (3) Historical carbon emissions, supply water temperature and system operation status are the critical factors affecting carbon emissions. The proposed physics-informed deep learning model solves the performance dependencies on dataset size and can be directly used for control-oriented building modeling and decarbonization optimization.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"213 ","pages":"Article 115478"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125001510","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Building decarbonization is beneficial to improve energy efficiency and mitigate climate change worldwide, and it is necessary to accurately investigate building carbon emissions and identify the potential factors. A crucial challenge is that pioneer studies rarely explore the correlations between controllable parameters and building carbon emissions and are unable to estimate carbon emissions comprehensively. In this context, this work proposes a physics-informed encoder-decoder framework for predictive carbon emissions estimation. The input variables are transformed into sequences to extract essential features and time information in the encoder, where the decoder receives the sequence and makes a prediction. Simultaneously, the control-oriented physical laws are explored and integrated to update the conventional loss function. The proposed model has been applied to a high-rise commercial building in China. Results reveal that: (1) The model sees a significant prediction improvement by 9.24 % after considering physical laws and shows outstanding robustness under five dataset conditions; (2) The R2 for carbon emissions prediction is 0.963, while the accuracy for anomaly detection is 0.963; (3) Historical carbon emissions, supply water temperature and system operation status are the critical factors affecting carbon emissions. The proposed physics-informed deep learning model solves the performance dependencies on dataset size and can be directly used for control-oriented building modeling and decarbonization optimization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信