Brenda G. Campos , Ivan I.K. Veloso , Maíra M. da Silva , Alberto C. Badino , Antonio J.G. Cruz
{"title":"A novel approach to heat removal and temperature control in fed-batch extractive ethanol fermentation using CO2","authors":"Brenda G. Campos , Ivan I.K. Veloso , Maíra M. da Silva , Alberto C. Badino , Antonio J.G. Cruz","doi":"10.1016/j.cep.2025.110212","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel approach to remove heat and maintain the broth temperature constant during fed-batch ethanol extractive fermentations by using a carbon dioxide (CO<sub>2</sub>) flow rate. The method offers an alternative to traditional cooling methods, such as water-based plate heat exchangers, which can be inefficient in distilleries located in hot regions. A mathematical model was developed and used to find the optimal CO<sub>2</sub> flow rate to maintain constant the broth temperature in simulated fermentations at 30, 32, and 34 °C. The results showed that using multiple CO<sub>2</sub> flow rates over an 8-hour stripping period could effectively reduce temperature deviations from the set-point while minimizing the total amount of CO<sub>2</sub> used. However, finding the optimal combination of flow rates becomes computationally expensive as the stripping period is split in a greater number of time subintervals. A comprehensive study was carried out to assess the adequate number of time subintervals to keep the broth temperature constant. Experimental fermentation carried out at 34 °C using eight-time subintervals confirmed the accuracy of the model's predictions. A temperature deviation of less than 0.5 °C from the set-point highlights the potential of extractive fermentation for controlling temperature and offers insights to enhance process efficiency.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"210 ","pages":"Article 110212"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000613","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel approach to remove heat and maintain the broth temperature constant during fed-batch ethanol extractive fermentations by using a carbon dioxide (CO2) flow rate. The method offers an alternative to traditional cooling methods, such as water-based plate heat exchangers, which can be inefficient in distilleries located in hot regions. A mathematical model was developed and used to find the optimal CO2 flow rate to maintain constant the broth temperature in simulated fermentations at 30, 32, and 34 °C. The results showed that using multiple CO2 flow rates over an 8-hour stripping period could effectively reduce temperature deviations from the set-point while minimizing the total amount of CO2 used. However, finding the optimal combination of flow rates becomes computationally expensive as the stripping period is split in a greater number of time subintervals. A comprehensive study was carried out to assess the adequate number of time subintervals to keep the broth temperature constant. Experimental fermentation carried out at 34 °C using eight-time subintervals confirmed the accuracy of the model's predictions. A temperature deviation of less than 0.5 °C from the set-point highlights the potential of extractive fermentation for controlling temperature and offers insights to enhance process efficiency.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.