The inventory of OH and H2O in the non-polar regions of the Moon

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Wen Yu , Hao Yan , Hong Tang , Xiongyao Li , Yu Wei , Huiming Bao , Chuanjiao Zhou , Bing Mo , Yanxue Wu , Haiyang Luo , Jialong Hao , Ruiying Li , Guangfei Wei , Xiaojia Zeng , Jianzhong Liu
{"title":"The inventory of OH and H2O in the non-polar regions of the Moon","authors":"Wen Yu ,&nbsp;Hao Yan ,&nbsp;Hong Tang ,&nbsp;Xiongyao Li ,&nbsp;Yu Wei ,&nbsp;Huiming Bao ,&nbsp;Chuanjiao Zhou ,&nbsp;Bing Mo ,&nbsp;Yanxue Wu ,&nbsp;Haiyang Luo ,&nbsp;Jialong Hao ,&nbsp;Ruiying Li ,&nbsp;Guangfei Wei ,&nbsp;Xiaojia Zeng ,&nbsp;Jianzhong Liu","doi":"10.1016/j.epsl.2025.119263","DOIUrl":null,"url":null,"abstract":"<div><div>The image of a bone-dry surface in the Moon's non-polar regions impinged by the Apollo missions was changed by the detection of widespread absorption near 3 µm in 2009, interpreted as a signature of hydration. However, debates persist on the relative contribution of molecular water (H<sub>2</sub>O) and other hydroxyl (OH) compounds to this hydration feature, as well as the cause of the potential temperature-dependence of the OH/H<sub>2</sub>O abundance. Resolving these debates will help to estimate the inventory of water on the Moon, a crucial resource for future space explorations. In this study, we measured the abundance and isotope composition of hydrogen within the outermost micron of Chang'e-5 soil grains, collected from the lunar surface and from a depth of 1 m. These measurements, combined with our laboratory simulation experiments, demonstrate that solar-wind-induced OH can be thermally retained in lunar regolith, with an abundance of approximately 48–95 ppm H<sub>2</sub>O equivalent. This abundance exhibits small latitude dependence and no diurnal variation. By integrating our results with published remote sensing data, we propose that a high amount of molecular water (∼360 ± 200 ppm H<sub>2</sub>O) exists in the subsurface layer of the Moon's non-polar regions. The migration of this H<sub>2</sub>O accounts for the observed latitude and diurnal variations in 3 µm band intensity. The inventory of OH and H<sub>2</sub>O proposed in this study reconciles the seemingly conflicting observations from various instruments, including infrared/ultraviolet spectroscopies and the Neutral Mass Spectrometer (NMS). Our interpretation of the distribution and dynamics of lunar hydration offers new insights for future lunar research and space missions.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"655 ","pages":"Article 119263"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25000627","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The image of a bone-dry surface in the Moon's non-polar regions impinged by the Apollo missions was changed by the detection of widespread absorption near 3 µm in 2009, interpreted as a signature of hydration. However, debates persist on the relative contribution of molecular water (H2O) and other hydroxyl (OH) compounds to this hydration feature, as well as the cause of the potential temperature-dependence of the OH/H2O abundance. Resolving these debates will help to estimate the inventory of water on the Moon, a crucial resource for future space explorations. In this study, we measured the abundance and isotope composition of hydrogen within the outermost micron of Chang'e-5 soil grains, collected from the lunar surface and from a depth of 1 m. These measurements, combined with our laboratory simulation experiments, demonstrate that solar-wind-induced OH can be thermally retained in lunar regolith, with an abundance of approximately 48–95 ppm H2O equivalent. This abundance exhibits small latitude dependence and no diurnal variation. By integrating our results with published remote sensing data, we propose that a high amount of molecular water (∼360 ± 200 ppm H2O) exists in the subsurface layer of the Moon's non-polar regions. The migration of this H2O accounts for the observed latitude and diurnal variations in 3 µm band intensity. The inventory of OH and H2O proposed in this study reconciles the seemingly conflicting observations from various instruments, including infrared/ultraviolet spectroscopies and the Neutral Mass Spectrometer (NMS). Our interpretation of the distribution and dynamics of lunar hydration offers new insights for future lunar research and space missions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信