Assessing the performance of GSMaP and IMERG in representing the diurnal cycle of precipitation in the Philippines during the southwest monsoon season

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Enrico Alejandro S. Taña , Lyndon Mark P. Olaguera , Shane Marie A. Visaga , Angela Monina T. Magnaye , Alyssa Gewell A. Llorin , Faye Abigail T. Cruz , Jose Ramon T. Villarin , Jun Matsumoto
{"title":"Assessing the performance of GSMaP and IMERG in representing the diurnal cycle of precipitation in the Philippines during the southwest monsoon season","authors":"Enrico Alejandro S. Taña ,&nbsp;Lyndon Mark P. Olaguera ,&nbsp;Shane Marie A. Visaga ,&nbsp;Angela Monina T. Magnaye ,&nbsp;Alyssa Gewell A. Llorin ,&nbsp;Faye Abigail T. Cruz ,&nbsp;Jose Ramon T. Villarin ,&nbsp;Jun Matsumoto","doi":"10.1016/j.atmosres.2025.107983","DOIUrl":null,"url":null,"abstract":"<div><div>The Philippines faces the challenge of having a limited number of rain-gauge stations, which are a vital source of observation data. Satellite-based precipitation data is a viable alternative; however, it is necessary to assess the strengths and weaknesses of these products over various regions in the Philippines. This study analyzes the performance of two leading products from the Global Precipitation Measurement (GPM) mission, namely: GSMaP_G v08 and IMERG_F v07. In particular, the diurnal cycle of precipitation in the Philippines during the southwest monsoon season (May to September) from 2013 to 2018 is assessed, in terms of precipitation amount (PA), frequency (PF) and intensity (PI), which has not been done in previous works. Results show that GSMaP_G outperforms IMERG_F in capturing the diurnal cycle for PA and PF, whereas IMERG_F better captures PI as GSMaP_G tends to underestimate PI consistently. In terms of timing, peak values for PA (PPA) and PF (PPF) have similar patterns for both station data and satellite products where these events develop during the afternoon to evening hours (15 to 18 Local Standard Time). Further examination of the possible drivers of these observed patterns suggests that for both station data and IMERG_F, short-duration events have the highest frequency contribution (≥ 60 %), while GSMaP_G has higher contribution (≥ 40 %) from long-duration precipitation events. However, in analyzing the contributions where intensity is considered, both station data and satellite products were observed to be dominated by short-duration light precipitation events (≥ 60 %). These results indicate that during the southwest monsoon season in the Philippines, the main drivers for PA and PF are short-duration light precipitation events, whereas PI may be driven more by localized rain showers. This may indicate that GSMaP_G is more suitable for examining hourly precipitation events that are more frequent but have a lower intensity, whereas IMERG_F may prove to be more useful when analyzing hourly precipitation events with higher intensities such as localized rain showers.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"317 ","pages":"Article 107983"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525000754","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Philippines faces the challenge of having a limited number of rain-gauge stations, which are a vital source of observation data. Satellite-based precipitation data is a viable alternative; however, it is necessary to assess the strengths and weaknesses of these products over various regions in the Philippines. This study analyzes the performance of two leading products from the Global Precipitation Measurement (GPM) mission, namely: GSMaP_G v08 and IMERG_F v07. In particular, the diurnal cycle of precipitation in the Philippines during the southwest monsoon season (May to September) from 2013 to 2018 is assessed, in terms of precipitation amount (PA), frequency (PF) and intensity (PI), which has not been done in previous works. Results show that GSMaP_G outperforms IMERG_F in capturing the diurnal cycle for PA and PF, whereas IMERG_F better captures PI as GSMaP_G tends to underestimate PI consistently. In terms of timing, peak values for PA (PPA) and PF (PPF) have similar patterns for both station data and satellite products where these events develop during the afternoon to evening hours (15 to 18 Local Standard Time). Further examination of the possible drivers of these observed patterns suggests that for both station data and IMERG_F, short-duration events have the highest frequency contribution (≥ 60 %), while GSMaP_G has higher contribution (≥ 40 %) from long-duration precipitation events. However, in analyzing the contributions where intensity is considered, both station data and satellite products were observed to be dominated by short-duration light precipitation events (≥ 60 %). These results indicate that during the southwest monsoon season in the Philippines, the main drivers for PA and PF are short-duration light precipitation events, whereas PI may be driven more by localized rain showers. This may indicate that GSMaP_G is more suitable for examining hourly precipitation events that are more frequent but have a lower intensity, whereas IMERG_F may prove to be more useful when analyzing hourly precipitation events with higher intensities such as localized rain showers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信