Kaelan R. Sullivan, Alicia Ravens, Alicia C. Walker, Jason D. Shepherd
{"title":"“Arc – A viral vector of memory and synaptic plasticity”","authors":"Kaelan R. Sullivan, Alicia Ravens, Alicia C. Walker, Jason D. Shepherd","doi":"10.1016/j.conb.2025.102979","DOIUrl":null,"url":null,"abstract":"<div><div>Learning induces gene expression and memory consolidation requires new protein synthesis. Many of these activity-induced genes are transcription factors. One of the exceptions is a key immediate early gene, <em>Arc</em>, which has been implicated in several forms of synaptic plasticity and is critical for long-term memory formation. Recently, Arc was discovered to have retroviral properties, such as the ability to form virus-like capsids, that were repurposed from an ancient retrotransposon. Arc capsids are released in extracellular vesicles that mediate intercellular communication. Here, we review Arc’s role in synaptic plasticity and propose a model for how Arc mediates memory consolidation via a novel intercellular non-cell autonomous form of long-term depression.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"91 ","pages":"Article 102979"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000108","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Learning induces gene expression and memory consolidation requires new protein synthesis. Many of these activity-induced genes are transcription factors. One of the exceptions is a key immediate early gene, Arc, which has been implicated in several forms of synaptic plasticity and is critical for long-term memory formation. Recently, Arc was discovered to have retroviral properties, such as the ability to form virus-like capsids, that were repurposed from an ancient retrotransposon. Arc capsids are released in extracellular vesicles that mediate intercellular communication. Here, we review Arc’s role in synaptic plasticity and propose a model for how Arc mediates memory consolidation via a novel intercellular non-cell autonomous form of long-term depression.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience