Enhance the accuracy of rice yield prediction through an advanced preprocessing architecture for time series data obtained from a UAV multispectral remote sensing platform
Xiangqian Feng , Ziqiu Li , Peixin Yang , Weiyuan Hong , Aidong Wang , Jinhua Qin , Haowen Zhang , Pavel Daryl Kem Senou , Yunbo Zhang , Danying Wang , Song Chen
{"title":"Enhance the accuracy of rice yield prediction through an advanced preprocessing architecture for time series data obtained from a UAV multispectral remote sensing platform","authors":"Xiangqian Feng , Ziqiu Li , Peixin Yang , Weiyuan Hong , Aidong Wang , Jinhua Qin , Haowen Zhang , Pavel Daryl Kem Senou , Yunbo Zhang , Danying Wang , Song Chen","doi":"10.1016/j.eja.2025.127542","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution temporal spectral data captured by unmanned aerial vehicles (UAVs) have become increasingly important in predicting crop yields. Effective preprocessing of these temporal datasets is crucial for improving yield estimation accuracy and facilitating the broader application of predictive models. Despite its growing importance, a comprehensive guide detailing the preprocessing procedures for UAV temporal data is currently lacking. Consequently, this research is dedicated to constructing a robust preprocessing framework tailored to UAV time series spectral remote sensing data, with a particular emphasis on assessing its impact on the accuracy of yield predictions. We developed a multi-level threshold segmentation (MLT) method specifically for rice particle swarm optimization (ricePSO). Three field experiments were executed under diverse nutritional regimes to contrast the efficacy of yield predictions derived from UAV temporal dynamic threshold segmentation against those achieved through temporal data smoothing. Results showed that the ricePSO multi-level threshold segmentation outperformed the conventional Otsu threshold segmentation method, enhancing yield prediction accuracy by 1–11 %. Meanwhile, data smoothing effectively reduced errors in the temporal data acquisition process. Combining MLT, Gaussian smoothing, and the Bidirectional Long Short-Term Memory (Bi-LSTM) model resulted in the highest yield prediction accuracy, with an <em>R²</em> value of 87.52 %. Overall, this study achieved improvements in yield prediction accuracy through the use of multilevel dynamic threshold segmentation and data smoothing, providing new strategies for the preprocessing of temporal multispectral remote sensing data from UAV.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"165 ","pages":"Article 127542"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030125000383","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution temporal spectral data captured by unmanned aerial vehicles (UAVs) have become increasingly important in predicting crop yields. Effective preprocessing of these temporal datasets is crucial for improving yield estimation accuracy and facilitating the broader application of predictive models. Despite its growing importance, a comprehensive guide detailing the preprocessing procedures for UAV temporal data is currently lacking. Consequently, this research is dedicated to constructing a robust preprocessing framework tailored to UAV time series spectral remote sensing data, with a particular emphasis on assessing its impact on the accuracy of yield predictions. We developed a multi-level threshold segmentation (MLT) method specifically for rice particle swarm optimization (ricePSO). Three field experiments were executed under diverse nutritional regimes to contrast the efficacy of yield predictions derived from UAV temporal dynamic threshold segmentation against those achieved through temporal data smoothing. Results showed that the ricePSO multi-level threshold segmentation outperformed the conventional Otsu threshold segmentation method, enhancing yield prediction accuracy by 1–11 %. Meanwhile, data smoothing effectively reduced errors in the temporal data acquisition process. Combining MLT, Gaussian smoothing, and the Bidirectional Long Short-Term Memory (Bi-LSTM) model resulted in the highest yield prediction accuracy, with an R² value of 87.52 %. Overall, this study achieved improvements in yield prediction accuracy through the use of multilevel dynamic threshold segmentation and data smoothing, providing new strategies for the preprocessing of temporal multispectral remote sensing data from UAV.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.