Ocean thermal energy conversion net power maximization for the optimization of plate heat exchanger geometry

Q1 Chemical Engineering
Kevin Fontaine , Takeshi Yasunaga , Yasuyuki Ikegami
{"title":"Ocean thermal energy conversion net power maximization for the optimization of plate heat exchanger geometry","authors":"Kevin Fontaine ,&nbsp;Takeshi Yasunaga ,&nbsp;Yasuyuki Ikegami","doi":"10.1016/j.ijft.2025.101115","DOIUrl":null,"url":null,"abstract":"<div><div>Ocean Thermal Energy Conversion is a steady source of renewable energy that uses the natural temperature gradient within the ocean but requires large and expensive heat exchangers, considerably contributing to the overall cost. Thus, this study focuses on finding optimum herringbone plate heat exchangers geometry leading to the highest net power output to heat transfer area ratio <span><math><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span>. A method to assess and maximize <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></math></span> is developed, applied to a heat exchanger geometry from the literature, before being used to find optimum geometries , which resulted in a 33.8% increase in <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></math></span> compared with the geometry used as reference, at chevron angles of 48.7° and 30°, mean channel spacing of 3.7 and 1.5 mm, corrugation pitches of 15 and 6.0 mm, and width to length ratios of 0.6 and 1 for the evaporator and condenser, respectively. The effect of each parameter is also analyzed showing a high impact of evaporator mean channel spacing and corrugation pitch and identified possible geometries for further studies. A sensitivity analysis revealed a design gross power with, granted a sufficient pipe diameter, negligible effect on optimum geometries, while the heat source temperature difference yielded two possible optimum for the condenser and a potential single one for the evaporator.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101115"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean Thermal Energy Conversion is a steady source of renewable energy that uses the natural temperature gradient within the ocean but requires large and expensive heat exchangers, considerably contributing to the overall cost. Thus, this study focuses on finding optimum herringbone plate heat exchangers geometry leading to the highest net power output to heat transfer area ratio (wnet). A method to assess and maximize wnet is developed, applied to a heat exchanger geometry from the literature, before being used to find optimum geometries , which resulted in a 33.8% increase in wnet compared with the geometry used as reference, at chevron angles of 48.7° and 30°, mean channel spacing of 3.7 and 1.5 mm, corrugation pitches of 15 and 6.0 mm, and width to length ratios of 0.6 and 1 for the evaporator and condenser, respectively. The effect of each parameter is also analyzed showing a high impact of evaporator mean channel spacing and corrugation pitch and identified possible geometries for further studies. A sensitivity analysis revealed a design gross power with, granted a sufficient pipe diameter, negligible effect on optimum geometries, while the heat source temperature difference yielded two possible optimum for the condenser and a potential single one for the evaporator.
海洋热能转换净功率最大化,用于优化板式换热器几何形状
海洋热能转换是一种稳定的可再生能源,它利用海洋内的自然温度梯度,但需要大型而昂贵的热交换器,这大大增加了总体成本。因此,本研究的重点是寻找最佳的人字形板式换热器几何形状,从而获得最高的净功率输出与传热面积比(wnet)。本文开发了一种评估和最大化wnet的方法,应用于文献中的热交换器几何形状,然后用于寻找最佳几何形状,结果与参考几何形状相比,在v形角为48.7°和30°,平均通道间距为3.7和1.5 mm,波纹节距为15和6.0 mm,蒸发器和冷凝器的宽长比分别为0.6和1时,wnet增加了33.8%。对每个参数的影响也进行了分析,表明蒸发器平均通道间距和波纹节距的影响很大,并确定了进一步研究的可能几何形状。灵敏度分析显示,在给定足够的管径的情况下,设计总功率对最佳几何形状的影响可以忽略不计,而热源温差对冷凝器产生了两个可能的最佳形状,对蒸发器产生了一个潜在的最佳形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信