Advanced finite element approaches for the 2D analysis of multilayered composite and sandwich beams

IF 4.4 2区 工程技术 Q1 MECHANICS
Matteo Sorrenti , Francesc Turon , Fermin Otero , Xavier Martinez , Marco Gherlone
{"title":"Advanced finite element approaches for the 2D analysis of multilayered composite and sandwich beams","authors":"Matteo Sorrenti ,&nbsp;Francesc Turon ,&nbsp;Fermin Otero ,&nbsp;Xavier Martinez ,&nbsp;Marco Gherlone","doi":"10.1016/j.euromechsol.2025.105606","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a new critical overview and a numerical assessment of some advanced Finite Element (FE) approaches for the analysis of multilayered composite and sandwich beams. Firstly, the fundamental hypotheses behind the Timoshenko Beam Theory (TBT) and the Refined Zigzag Theory (RZT) are addressed, and corresponding low-order simple and efficient <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> two-noded beam elements are recalled for 2D cylindrical bending problems. Additionally, two novel advanced FE techniques are employed for 2D bending analysis, i.e. the Multi-Scale (MS) analysis and the Beam-Like Reduced Order Model (BLROM). The proposed FE models are used to investigate the static cylindrical bending response of multilayered composite and sandwich beams under different boundary conditions. The results demonstrate the superior predictive capabilities of the RZT, MS and BLROM models compared to the TBT one. Furthermore, despite having the same kinematics as the TBT, the MS and BLROM models guarantee enhancements in axial strain and transverse shear stress distributions. In addition, the RZT confirms its superior accuracy in predicting both transverse displacements and strains across the laminate thickness. Depending on their accuracy, the RZT, MS and BLROM models are computationally more advantageous than other expensive high-fidelity FE approaches and excellent candidates for the 2D static analysis of multilayered beams.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105606"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000403","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a new critical overview and a numerical assessment of some advanced Finite Element (FE) approaches for the analysis of multilayered composite and sandwich beams. Firstly, the fundamental hypotheses behind the Timoshenko Beam Theory (TBT) and the Refined Zigzag Theory (RZT) are addressed, and corresponding low-order simple and efficient C0 two-noded beam elements are recalled for 2D cylindrical bending problems. Additionally, two novel advanced FE techniques are employed for 2D bending analysis, i.e. the Multi-Scale (MS) analysis and the Beam-Like Reduced Order Model (BLROM). The proposed FE models are used to investigate the static cylindrical bending response of multilayered composite and sandwich beams under different boundary conditions. The results demonstrate the superior predictive capabilities of the RZT, MS and BLROM models compared to the TBT one. Furthermore, despite having the same kinematics as the TBT, the MS and BLROM models guarantee enhancements in axial strain and transverse shear stress distributions. In addition, the RZT confirms its superior accuracy in predicting both transverse displacements and strains across the laminate thickness. Depending on their accuracy, the RZT, MS and BLROM models are computationally more advantageous than other expensive high-fidelity FE approaches and excellent candidates for the 2D static analysis of multilayered beams.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信