Urban fabric decoded: High-precision building material identification via deep learning and remote sensing

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Kun Sun , Qiaoxuan Li , Qiance Liu , Jinchao Song , Menglin Dai , Xingjian Qian , Srinivasa Raghavendra Bhuvan Gummidi , Bailang Yu , Felix Creutzig , Gang Liu
{"title":"Urban fabric decoded: High-precision building material identification via deep learning and remote sensing","authors":"Kun Sun ,&nbsp;Qiaoxuan Li ,&nbsp;Qiance Liu ,&nbsp;Jinchao Song ,&nbsp;Menglin Dai ,&nbsp;Xingjian Qian ,&nbsp;Srinivasa Raghavendra Bhuvan Gummidi ,&nbsp;Bailang Yu ,&nbsp;Felix Creutzig ,&nbsp;Gang Liu","doi":"10.1016/j.ese.2025.100538","DOIUrl":null,"url":null,"abstract":"<div><div>Precise identification and categorization of building materials are essential for informing strategies related to embodied carbon reduction, building retrofitting, and circularity in urban environments. However, existing building material databases are typically limited to individual projects or specific geographic areas, offering only approximate assessments. Acquiring large-scale and precise material data is hindered by inadequate records and financial constraints. Here, we introduce a novel automated framework that harnesses recent advances in sensing technology and deep learning to identify roof and facade materials using remote sensing data and Google Street View imagery. The model was initially trained and validated on Odense's comprehensive dataset and then extended to characterize building materials across Danish urban landscapes, including Copenhagen, Aarhus, and Aalborg. Our approach demonstrates the model's scalability and adaptability to different geographic contexts and architectural styles, providing high-resolution insights into material distribution across diverse building types and cities. These findings are pivotal for informing sustainable urban planning, revising building codes to lower carbon emissions, and optimizing retrofitting efforts to meet contemporary standards for energy efficiency and emission reductions.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100538"},"PeriodicalIF":14.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266649842500016X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Precise identification and categorization of building materials are essential for informing strategies related to embodied carbon reduction, building retrofitting, and circularity in urban environments. However, existing building material databases are typically limited to individual projects or specific geographic areas, offering only approximate assessments. Acquiring large-scale and precise material data is hindered by inadequate records and financial constraints. Here, we introduce a novel automated framework that harnesses recent advances in sensing technology and deep learning to identify roof and facade materials using remote sensing data and Google Street View imagery. The model was initially trained and validated on Odense's comprehensive dataset and then extended to characterize building materials across Danish urban landscapes, including Copenhagen, Aarhus, and Aalborg. Our approach demonstrates the model's scalability and adaptability to different geographic contexts and architectural styles, providing high-resolution insights into material distribution across diverse building types and cities. These findings are pivotal for informing sustainable urban planning, revising building codes to lower carbon emissions, and optimizing retrofitting efforts to meet contemporary standards for energy efficiency and emission reductions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信