Hydraulic characteristics of a large rotation-angle baffle-drop shaft through synergetic discharge from dry and wet sides

IF 3.7 Q1 WATER RESOURCES
Pei-de Liang , Jun Chen , Teng Wu , Jing Yan
{"title":"Hydraulic characteristics of a large rotation-angle baffle-drop shaft through synergetic discharge from dry and wet sides","authors":"Pei-de Liang ,&nbsp;Jun Chen ,&nbsp;Teng Wu ,&nbsp;Jing Yan","doi":"10.1016/j.wse.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the operational capacity and space utilization of baffle-drop shafts, this study improved the traditional baffle-drop shaft by expanding the wet-side space, incorporating large rotation-angle baffles, and installing overflow holes in the dividing wall. A three-dimensional turbulent model was developed using ANSYS Fluent to simulate the hydraulic characteristics of both traditional and new baffle-drop shafts across various flow rates. The simulation results demonstrated that the new shaft design allowed for discharge from both the wet and dry sides, significantly improving operational capacity, with the dry side capable of handling 40% of the inlet flow. Compared to the traditional shaft, the new design reduced shaft wall pressures and decreased the mean and standard deviation of pressure on typical baffles by 21% and 63%, respectively, therefore enhancing structural safety. Additionally, the new shaft achieved a 2%–12% higher energy dissipation rate than the traditional shaft across different flow rates. This study offers valuable insights for the design and optimization of drop shafts in deep tunnel drainage systems.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"18 1","pages":"Pages 115-124"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the operational capacity and space utilization of baffle-drop shafts, this study improved the traditional baffle-drop shaft by expanding the wet-side space, incorporating large rotation-angle baffles, and installing overflow holes in the dividing wall. A three-dimensional turbulent model was developed using ANSYS Fluent to simulate the hydraulic characteristics of both traditional and new baffle-drop shafts across various flow rates. The simulation results demonstrated that the new shaft design allowed for discharge from both the wet and dry sides, significantly improving operational capacity, with the dry side capable of handling 40% of the inlet flow. Compared to the traditional shaft, the new design reduced shaft wall pressures and decreased the mean and standard deviation of pressure on typical baffles by 21% and 63%, respectively, therefore enhancing structural safety. Additionally, the new shaft achieved a 2%–12% higher energy dissipation rate than the traditional shaft across different flow rates. This study offers valuable insights for the design and optimization of drop shafts in deep tunnel drainage systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
5.00%
发文量
573
审稿时长
50 weeks
期刊介绍: Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信