Daming Niu , Pingchang Sun , Yang Wang , Hongliang Dang , Zhisheng Luan , Yueyue Bai
{"title":"Evolution of organic matter and hydrocarbon-generating characteristics of sapropelic humic coal and humosapropelic in open systems","authors":"Daming Niu , Pingchang Sun , Yang Wang , Hongliang Dang , Zhisheng Luan , Yueyue Bai","doi":"10.1016/j.jaap.2025.107026","DOIUrl":null,"url":null,"abstract":"<div><div>During their maturation, immature coals with different organic matter (OM) types exhibit differences in their hydrocarbon-generating evolution processes. However, these differences and the impact of residual hydrocarbons on the hydrocarbon-generating potential of coal have rarely been studied. Sapropelic humic coal and humosapropelic coal were selected for the thermal simulation experiments in this study, and extractable organic matter (EOM) was obtained. The hydrocarbon generation and expulsion potential of sapropelic humic coal and humosapropelic coal were quantitatively determined through total organic carbon (TOC) measurements, Rock-Eval pyrolysis and other experiments. We found that the carbon accumulation effect of coal influences changes in TOC during the thermal evolution process. An open hydrocarbon expulsion environment revealed that humosapropelic coal was prone to generating oil, whereas sapropelic humic coal produced both oil and gas. We believe that the residual bitumen in coal is the source of coalbed methane in highly mature to overmature coal stages, and we preliminarily determined that the optimal temperature for coal hydrocarbon generation under rapid heating is 475 °C.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107026"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237025000798","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
During their maturation, immature coals with different organic matter (OM) types exhibit differences in their hydrocarbon-generating evolution processes. However, these differences and the impact of residual hydrocarbons on the hydrocarbon-generating potential of coal have rarely been studied. Sapropelic humic coal and humosapropelic coal were selected for the thermal simulation experiments in this study, and extractable organic matter (EOM) was obtained. The hydrocarbon generation and expulsion potential of sapropelic humic coal and humosapropelic coal were quantitatively determined through total organic carbon (TOC) measurements, Rock-Eval pyrolysis and other experiments. We found that the carbon accumulation effect of coal influences changes in TOC during the thermal evolution process. An open hydrocarbon expulsion environment revealed that humosapropelic coal was prone to generating oil, whereas sapropelic humic coal produced both oil and gas. We believe that the residual bitumen in coal is the source of coalbed methane in highly mature to overmature coal stages, and we preliminarily determined that the optimal temperature for coal hydrocarbon generation under rapid heating is 475 °C.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.