{"title":"Low-temperature bonding of HCl-dipped Ge substrate with diamond heat-spreader through atomically thin layer","authors":"Yuki Minowa , Takashi Matsumae , Yuichi Kurashima , Hideki Takagi , Masanori Hayase","doi":"10.1016/j.mtla.2025.102369","DOIUrl":null,"url":null,"abstract":"<div><div>Although Germanium devices have attracted attention for post-silicon device applications, they suffer from heat dissipation problems that hinder miniaturization. This study demonstrates the low-temperature and vacuum-free bonding of a germanium substrate with a diamond heat spreader, which has the highest thermal conductivity among solid materials. For efficient heat dissipation, we designed a bonding process at 200 °C using a reduction pre-bonding treatment instead of conventional oxidation. The process suppresses the formation of a germanium oxide layer at the bonding interface. This study demonstrates that germanium and diamond substrates are bonded through a 1.6-nm-thick amorphous intermediate layer. The shear stress reached 9.43 MPa, satisfying the MIL-STD-883E standard for microelectronics. As the germanium substrate can form atomic bonds with thermally conductive materials through a thin interfacial layer, it is expected that the bonding process of the HCl-dipped Ge device can contribute to future high-frequency devices.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102369"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925000365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although Germanium devices have attracted attention for post-silicon device applications, they suffer from heat dissipation problems that hinder miniaturization. This study demonstrates the low-temperature and vacuum-free bonding of a germanium substrate with a diamond heat spreader, which has the highest thermal conductivity among solid materials. For efficient heat dissipation, we designed a bonding process at 200 °C using a reduction pre-bonding treatment instead of conventional oxidation. The process suppresses the formation of a germanium oxide layer at the bonding interface. This study demonstrates that germanium and diamond substrates are bonded through a 1.6-nm-thick amorphous intermediate layer. The shear stress reached 9.43 MPa, satisfying the MIL-STD-883E standard for microelectronics. As the germanium substrate can form atomic bonds with thermally conductive materials through a thin interfacial layer, it is expected that the bonding process of the HCl-dipped Ge device can contribute to future high-frequency devices.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).