3D-Printed metal organic frameworks-based supramolecular hydrogel as biological materials

Moses Kumi , Bridget Kpomah , Onome Ejeromedoghene , Aboagye Gifty Takyiwaa , Onomen Agnes Ehizojie
{"title":"3D-Printed metal organic frameworks-based supramolecular hydrogel as biological materials","authors":"Moses Kumi ,&nbsp;Bridget Kpomah ,&nbsp;Onome Ejeromedoghene ,&nbsp;Aboagye Gifty Takyiwaa ,&nbsp;Onomen Agnes Ehizojie","doi":"10.1016/j.supmat.2025.100100","DOIUrl":null,"url":null,"abstract":"<div><div>In the dynamic landscape of biomaterials, the fusion of 3D-printed Metal-Organic Frameworks (MOFs) with supramolecular hydrogel technologies marks a pivotal shift toward generating next-generation biological materials. This comprehensive review sheds light on the fabrication of MOF-based supramolecular hydrogels using state-of-the-art 3D-printing methodologies. Herein, the distinct structural and functional attributes of these hybrid materials, setting the stage for their groundbreaking applications as biomaterials for wound care, bone regeneration, wearable electronics, and biosensing devices were addressed. These applications demonstrate the ability of 3D-printed MOF-based supramolecular hydrogels to redefine the norms in biomedical engineering and wearable technology landscapes. A deep dive into the functional properties of 3D-printed MOF-based biomaterials reveals their remarkable biofunctional attributes and the harmonious interplay between 3D-printed MOF structures and hydrogel networks. The review navigates through the existing challenges and unfolds the prospects within this fast-evolving domain, offering valuable insights into emergent growth trajectories and the scalability prospects of these hybrid materials. In conclusion, we spotlight the bright prospects of 3D-printed MOF-based supramolecular hydrogels, advocating their pivotal role in spearheading the development of biofunctional materials. Serving as an essential guide, this review targets researchers and industry experts, steering the course for future explorations and utilizations in this flourishing area of research.</div></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"4 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240525000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the dynamic landscape of biomaterials, the fusion of 3D-printed Metal-Organic Frameworks (MOFs) with supramolecular hydrogel technologies marks a pivotal shift toward generating next-generation biological materials. This comprehensive review sheds light on the fabrication of MOF-based supramolecular hydrogels using state-of-the-art 3D-printing methodologies. Herein, the distinct structural and functional attributes of these hybrid materials, setting the stage for their groundbreaking applications as biomaterials for wound care, bone regeneration, wearable electronics, and biosensing devices were addressed. These applications demonstrate the ability of 3D-printed MOF-based supramolecular hydrogels to redefine the norms in biomedical engineering and wearable technology landscapes. A deep dive into the functional properties of 3D-printed MOF-based biomaterials reveals their remarkable biofunctional attributes and the harmonious interplay between 3D-printed MOF structures and hydrogel networks. The review navigates through the existing challenges and unfolds the prospects within this fast-evolving domain, offering valuable insights into emergent growth trajectories and the scalability prospects of these hybrid materials. In conclusion, we spotlight the bright prospects of 3D-printed MOF-based supramolecular hydrogels, advocating their pivotal role in spearheading the development of biofunctional materials. Serving as an essential guide, this review targets researchers and industry experts, steering the course for future explorations and utilizations in this flourishing area of research.

Abstract Image

基于3d打印金属有机框架的超分子水凝胶作为生物材料
在生物材料的动态景观中,3d打印金属有机框架(mof)与超分子水凝胶技术的融合标志着下一代生物材料的关键转变。这篇全面的综述揭示了使用最先进的3d打印方法制造基于mof的超分子水凝胶。在这里,这些混合材料的独特结构和功能属性,为它们作为伤口护理、骨再生、可穿戴电子设备和生物传感设备的生物材料的突破性应用奠定了基础。这些应用证明了基于mof的3d打印超分子水凝胶能够重新定义生物医学工程和可穿戴技术领域的规范。深入研究3d打印MOF基生物材料的功能特性,揭示了其卓越的生物功能特性以及3d打印MOF结构与水凝胶网络之间的和谐相互作用。该报告梳理了现有的挑战,展现了这一快速发展领域的前景,为这些混合材料的新兴增长轨迹和可扩展性前景提供了有价值的见解。总之,我们强调了3d打印基于mof的超分子水凝胶的光明前景,倡导其在引领生物功能材料发展中的关键作用。这篇综述为研究人员和行业专家提供了重要的指导,为未来在这一蓬勃发展的研究领域的探索和利用指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信