{"title":"3D-Printed metal organic frameworks-based supramolecular hydrogel as biological materials","authors":"Moses Kumi , Bridget Kpomah , Onome Ejeromedoghene , Aboagye Gifty Takyiwaa , Onomen Agnes Ehizojie","doi":"10.1016/j.supmat.2025.100100","DOIUrl":null,"url":null,"abstract":"<div><div>In the dynamic landscape of biomaterials, the fusion of 3D-printed Metal-Organic Frameworks (MOFs) with supramolecular hydrogel technologies marks a pivotal shift toward generating next-generation biological materials. This comprehensive review sheds light on the fabrication of MOF-based supramolecular hydrogels using state-of-the-art 3D-printing methodologies. Herein, the distinct structural and functional attributes of these hybrid materials, setting the stage for their groundbreaking applications as biomaterials for wound care, bone regeneration, wearable electronics, and biosensing devices were addressed. These applications demonstrate the ability of 3D-printed MOF-based supramolecular hydrogels to redefine the norms in biomedical engineering and wearable technology landscapes. A deep dive into the functional properties of 3D-printed MOF-based biomaterials reveals their remarkable biofunctional attributes and the harmonious interplay between 3D-printed MOF structures and hydrogel networks. The review navigates through the existing challenges and unfolds the prospects within this fast-evolving domain, offering valuable insights into emergent growth trajectories and the scalability prospects of these hybrid materials. In conclusion, we spotlight the bright prospects of 3D-printed MOF-based supramolecular hydrogels, advocating their pivotal role in spearheading the development of biofunctional materials. Serving as an essential guide, this review targets researchers and industry experts, steering the course for future explorations and utilizations in this flourishing area of research.</div></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"4 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240525000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the dynamic landscape of biomaterials, the fusion of 3D-printed Metal-Organic Frameworks (MOFs) with supramolecular hydrogel technologies marks a pivotal shift toward generating next-generation biological materials. This comprehensive review sheds light on the fabrication of MOF-based supramolecular hydrogels using state-of-the-art 3D-printing methodologies. Herein, the distinct structural and functional attributes of these hybrid materials, setting the stage for their groundbreaking applications as biomaterials for wound care, bone regeneration, wearable electronics, and biosensing devices were addressed. These applications demonstrate the ability of 3D-printed MOF-based supramolecular hydrogels to redefine the norms in biomedical engineering and wearable technology landscapes. A deep dive into the functional properties of 3D-printed MOF-based biomaterials reveals their remarkable biofunctional attributes and the harmonious interplay between 3D-printed MOF structures and hydrogel networks. The review navigates through the existing challenges and unfolds the prospects within this fast-evolving domain, offering valuable insights into emergent growth trajectories and the scalability prospects of these hybrid materials. In conclusion, we spotlight the bright prospects of 3D-printed MOF-based supramolecular hydrogels, advocating their pivotal role in spearheading the development of biofunctional materials. Serving as an essential guide, this review targets researchers and industry experts, steering the course for future explorations and utilizations in this flourishing area of research.