Guiqiang Zhu , Qian Zhang , Benwei Peng , Siyuan Liu , Cuiling Lin , Alexander J.C. Kuehne , Mengjiao Cheng , Feng Shi
{"title":"Lego-like Visible Assembly of Responsive Components via Flexible Supramolecular Connectivity to Realize High-capacity Information Encoding","authors":"Guiqiang Zhu , Qian Zhang , Benwei Peng , Siyuan Liu , Cuiling Lin , Alexander J.C. Kuehne , Mengjiao Cheng , Feng Shi","doi":"10.1016/j.supmat.2025.100099","DOIUrl":null,"url":null,"abstract":"<div><div>Self-assembly in life that creates complex creatures with colorful biological activities, relies heavily on all-scale diverse components and high-capacity assembly information, which directs assembly patterns by specifying the connectivity of components. Despite of nanoscale colloids or connectivity via DNA hybridization providing rich possibility to store information, the execution of encoding at the level of macroscopic bulk materials remains improving, especially on the connectivity diversity. Here, we demonstrate visible self-assembly of millimeter-scaled hydrogels with flexible Lego-like connectivity for high-capacity encoding by storing the assembly information of both orthogonally stimulus-responsive components and interfacial supramolecular binding. Three categories of hydrogels with response to temperature, redox conditions, and UV light, are used as the intelligent building components. Meanwhile, reversible electrostatic interactions are applied as the interfacial supramolecular connectivity, which undergoes on-demand assembly/disassembly to create diverse structures similar to Lego playing. Mechanistic study is obtained by quantify the connectivity via in-situ measurements of interfacial binding forces between components. The flexible supramolecular connectivity of responsive components has provided abundant assembly possibility with good control, leading to a high encoding capacity of over 800 billion codes for a simple 5 × 5 assembly. This strategy induces myriad self-assembly pathways to broaden the design of information storage, and improves the execution of encoding at a bulk material level.</div></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"4 ","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266724052500008X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Self-assembly in life that creates complex creatures with colorful biological activities, relies heavily on all-scale diverse components and high-capacity assembly information, which directs assembly patterns by specifying the connectivity of components. Despite of nanoscale colloids or connectivity via DNA hybridization providing rich possibility to store information, the execution of encoding at the level of macroscopic bulk materials remains improving, especially on the connectivity diversity. Here, we demonstrate visible self-assembly of millimeter-scaled hydrogels with flexible Lego-like connectivity for high-capacity encoding by storing the assembly information of both orthogonally stimulus-responsive components and interfacial supramolecular binding. Three categories of hydrogels with response to temperature, redox conditions, and UV light, are used as the intelligent building components. Meanwhile, reversible electrostatic interactions are applied as the interfacial supramolecular connectivity, which undergoes on-demand assembly/disassembly to create diverse structures similar to Lego playing. Mechanistic study is obtained by quantify the connectivity via in-situ measurements of interfacial binding forces between components. The flexible supramolecular connectivity of responsive components has provided abundant assembly possibility with good control, leading to a high encoding capacity of over 800 billion codes for a simple 5 × 5 assembly. This strategy induces myriad self-assembly pathways to broaden the design of information storage, and improves the execution of encoding at a bulk material level.