On pointwise convergence of cone multipliers

IF 1.7 2区 数学 Q1 MATHEMATICS
Peng Chen , Danqing He , Xiaochun Li , Lixin Yan
{"title":"On pointwise convergence of cone multipliers","authors":"Peng Chen ,&nbsp;Danqing He ,&nbsp;Xiaochun Li ,&nbsp;Lixin Yan","doi":"10.1016/j.jfa.2025.110853","DOIUrl":null,"url":null,"abstract":"<div><div>We study the pointwise convergence of the cone multipliers<span><span><span><math><msup><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>λ</mi></mrow></msup><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></munder><msubsup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>|</mo><msup><mrow><mi>ξ</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msubsup><mrow><mi>ξ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfrac><mo>)</mo></mrow><mrow><mo>+</mo></mrow><mrow><mi>λ</mi></mrow></msubsup><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>x</mi><mo>⋅</mo><mi>ξ</mi></mrow></msup><mi>d</mi><mi>ξ</mi><mo>.</mo></math></span></span></span> For <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>, and <span><math><mi>λ</mi><mo>&gt;</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>n</mi><mo>|</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>|</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, we prove the pointwise convergence of cone multipliers, i.e.<span><span><span><math><munder><mi>lim</mi><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><msubsup><mrow><mover><mrow><mi>T</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>t</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>(</mo><mi>f</mi><mo>)</mo><mo>→</mo><mi>f</mi><mtext> a.e.</mtext><mo>,</mo></math></span></span></span> where <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> satisfies <span><math><mrow><mtext>supp</mtext><mspace></mspace></mrow><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>⊂</mo><mo>{</mo><mi>ξ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mspace></mspace><mn>1</mn><mo>&lt;</mo><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mn>2</mn><mo>}</mo></math></span>. Our main tools are weighted estimates for maximal cone operators, which are consequences of trace inequalities for cones.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 9","pages":"Article 110853"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000357","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the pointwise convergence of the cone multipliersT˜λ(f)(x):=Rn(1t2|ξ|2ξn2)+λfˆ(ξ)e2πixξdξ. For p2, and λ>max{n|1p12|12,0}, we prove the pointwise convergence of cone multipliers, i.e.limtT˜tλ(f)f a.e., where fLp(Rn) satisfies suppfˆ{ξRn:1<|ξn|<2}. Our main tools are weighted estimates for maximal cone operators, which are consequences of trace inequalities for cones.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信