Modulation-enabled healable and stretchable shape-memory polymer composites for digital light processing 4D printing

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Wei Huang , Wenqing Chen , Vikramjeet Singh , Jianhui Zhang , Yu Wang , Mohammed Alabdullatif , Eral Bele , Gary J. Lye , Helen C. Hailes , Manish K. Tiwari
{"title":"Modulation-enabled healable and stretchable shape-memory polymer composites for digital light processing 4D printing","authors":"Wei Huang ,&nbsp;Wenqing Chen ,&nbsp;Vikramjeet Singh ,&nbsp;Jianhui Zhang ,&nbsp;Yu Wang ,&nbsp;Mohammed Alabdullatif ,&nbsp;Eral Bele ,&nbsp;Gary J. Lye ,&nbsp;Helen C. Hailes ,&nbsp;Manish K. Tiwari","doi":"10.1016/j.addma.2025.104699","DOIUrl":null,"url":null,"abstract":"<div><div>4D printing provides viable pathways for 3D-printed objects that require morphological, time-dependent adaptations. Among various 4D printing materials, shape-memory polymers (SMPs) are one of the most extensively utilized morphing materials. However, most existing SMPs in 4D printing systems suffer from irreparability and low stretchability due to abundant covalently cross-linked networks. Also, their shape-programming steps typically involve stringent temperature requirements (≥90 ºC) and lack strategies for remote controllability, significantly restricting their applicability. Herein, we report a novel thermoplastic polymer system with self-healing and highly stretchable shape-memory capabilities for digital light processing (DLP)-based 4D printing. This system was attained through the integration of two distinct compositions: a polymer-based framework that acts as the reinforcing phase; and an elastic lubricant featuring hydrogen bonds that facilitates self-healing, high stretchability, and enhanced shape recovery. Additionally, light-responsive capabilities were shown to be effectively achieved by introducing a novel cross-linker functionalized with biomass lignin. The rationally selected safer set of ingredients ensures that our printed shape-memory polymer composites (SMPCs) are biocompatible. We further demonstrate their potential applications in aerospace and healthcare. This work provides a foundation for the design and facilitation of intelligent materials, showcasing excellent properties across multiple fields.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"101 ","pages":"Article 104699"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000636","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

4D printing provides viable pathways for 3D-printed objects that require morphological, time-dependent adaptations. Among various 4D printing materials, shape-memory polymers (SMPs) are one of the most extensively utilized morphing materials. However, most existing SMPs in 4D printing systems suffer from irreparability and low stretchability due to abundant covalently cross-linked networks. Also, their shape-programming steps typically involve stringent temperature requirements (≥90 ºC) and lack strategies for remote controllability, significantly restricting their applicability. Herein, we report a novel thermoplastic polymer system with self-healing and highly stretchable shape-memory capabilities for digital light processing (DLP)-based 4D printing. This system was attained through the integration of two distinct compositions: a polymer-based framework that acts as the reinforcing phase; and an elastic lubricant featuring hydrogen bonds that facilitates self-healing, high stretchability, and enhanced shape recovery. Additionally, light-responsive capabilities were shown to be effectively achieved by introducing a novel cross-linker functionalized with biomass lignin. The rationally selected safer set of ingredients ensures that our printed shape-memory polymer composites (SMPCs) are biocompatible. We further demonstrate their potential applications in aerospace and healthcare. This work provides a foundation for the design and facilitation of intelligent materials, showcasing excellent properties across multiple fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信