Surgical text-to-image generation

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chinedu Innocent Nwoye , Rupak Bose , Kareem Elgohary , Lorenzo Arboit , Giorgio Carlino , Joël L. Lavanchy , Pietro Mascagni , Nicolas Padoy
{"title":"Surgical text-to-image generation","authors":"Chinedu Innocent Nwoye ,&nbsp;Rupak Bose ,&nbsp;Kareem Elgohary ,&nbsp;Lorenzo Arboit ,&nbsp;Giorgio Carlino ,&nbsp;Joël L. Lavanchy ,&nbsp;Pietro Mascagni ,&nbsp;Nicolas Padoy","doi":"10.1016/j.patrec.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Acquiring surgical data for research and development is significantly hindered by high annotation costs and practical and ethical constraints. Synthetically generated images present a valuable alternative. In this work, we explore adapting text-to-image generative models for the surgical domain using the CholecT50 dataset, which provides surgical images annotated with action triplets (instrument, verb, target). We investigate several language models and find T5 to offer more distinct features for differentiating surgical actions on triplet-based textual inputs, and showcasing stronger alignment between long and triplet-based captions. To address challenges in training text-to-image models solely on triplet-based captions without additional input signals, we discover that triplet text embeddings are instrument-centric in the latent space. Leveraging this insight, we design an instrument-based class balancing technique to counteract data imbalance and skewness, improving training convergence. Extending Imagen, a diffusion-based generative model, we develop <em>Surgical Imagen</em> to generate photorealistic and activity-aligned surgical images from triplet-based textual prompts. We assess the model on quality, alignment, reasoning, and knowledge, achieving FID and CLIP scores of 3.7 and 26.8% respectively. Human expert survey shows that participants were highly challenged by the realistic characteristics of the generated samples, demonstrating Surgical Imagen’s effectiveness as a practical alternative to real data collection.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"190 ","pages":"Pages 73-80"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525000376","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Acquiring surgical data for research and development is significantly hindered by high annotation costs and practical and ethical constraints. Synthetically generated images present a valuable alternative. In this work, we explore adapting text-to-image generative models for the surgical domain using the CholecT50 dataset, which provides surgical images annotated with action triplets (instrument, verb, target). We investigate several language models and find T5 to offer more distinct features for differentiating surgical actions on triplet-based textual inputs, and showcasing stronger alignment between long and triplet-based captions. To address challenges in training text-to-image models solely on triplet-based captions without additional input signals, we discover that triplet text embeddings are instrument-centric in the latent space. Leveraging this insight, we design an instrument-based class balancing technique to counteract data imbalance and skewness, improving training convergence. Extending Imagen, a diffusion-based generative model, we develop Surgical Imagen to generate photorealistic and activity-aligned surgical images from triplet-based textual prompts. We assess the model on quality, alignment, reasoning, and knowledge, achieving FID and CLIP scores of 3.7 and 26.8% respectively. Human expert survey shows that participants were highly challenged by the realistic characteristics of the generated samples, demonstrating Surgical Imagen’s effectiveness as a practical alternative to real data collection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信