New MDS codes of non-GRS type and NMDS codes

IF 0.7 3区 数学 Q2 MATHEMATICS
Yujie Zhi, Shixin Zhu
{"title":"New MDS codes of non-GRS type and NMDS codes","authors":"Yujie Zhi,&nbsp;Shixin Zhu","doi":"10.1016/j.disc.2025.114436","DOIUrl":null,"url":null,"abstract":"<div><div>Maximum distance separable (MDS) and near maximum distance separable (NMDS) codes have been widely used in various fields such as communication systems, data storage, and quantum codes due to their algebraic properties and excellent error-correcting capabilities. This paper focuses on a specific class of linear codes and establishes necessary and sufficient conditions for them to be MDS or NMDS. Additionally, we employ the well-known Schur method to demonstrate that they are non-equivalent to generalized Reed-Solomon codes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114436"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000445","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Maximum distance separable (MDS) and near maximum distance separable (NMDS) codes have been widely used in various fields such as communication systems, data storage, and quantum codes due to their algebraic properties and excellent error-correcting capabilities. This paper focuses on a specific class of linear codes and establishes necessary and sufficient conditions for them to be MDS or NMDS. Additionally, we employ the well-known Schur method to demonstrate that they are non-equivalent to generalized Reed-Solomon codes.
最大距离可分码(MDS)和近最大距离可分码(NMDS)因其代数特性和出色的纠错能力,已被广泛应用于通信系统、数据存储和量子编码等多个领域。本文重点研究了一类特定的线性编码,并建立了它们成为 MDS 或 NMDS 的必要条件和充分条件。此外,我们还利用著名的舒尔方法证明它们与广义里德-所罗门码不等同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信