A combinatorial proof of a family of truncated identities for the partition function

IF 0.7 3区 数学 Q2 MATHEMATICS
Yongqiang Chen, Olivia X.M. Yao
{"title":"A combinatorial proof of a family of truncated identities for the partition function","authors":"Yongqiang Chen,&nbsp;Olivia X.M. Yao","doi":"10.1016/j.disc.2025.114434","DOIUrl":null,"url":null,"abstract":"<div><div>In 2012, Andrews and Merca proved a truncated partition identity by studying the truncated series of Euler's pentagonal number theorem. Andrews and Merca's work has opened up a new study on truncated theta series and a number of results on truncated theta series have been proved in the past decade. Recently, Xia, Yee and Zhao proved a new truncated partition identity by taking different truncated series than the one chosen by Andrews and Merca. Very recently, Yao proved a new truncated identity on Euler's pentagonal number theorem. The identity is equivalent to a family of truncated identities for the partition function which involves the results proved by Andrew-Merca, and Xia-Yee-Zhao. In this paper, we provide a purely combinatorial proof of the family of truncated identities for the partition function. In particular, we answer a question on combinatorial proofs of two partition identities, which were posed by Wang and Xiao.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114434"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000421","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2012, Andrews and Merca proved a truncated partition identity by studying the truncated series of Euler's pentagonal number theorem. Andrews and Merca's work has opened up a new study on truncated theta series and a number of results on truncated theta series have been proved in the past decade. Recently, Xia, Yee and Zhao proved a new truncated partition identity by taking different truncated series than the one chosen by Andrews and Merca. Very recently, Yao proved a new truncated identity on Euler's pentagonal number theorem. The identity is equivalent to a family of truncated identities for the partition function which involves the results proved by Andrew-Merca, and Xia-Yee-Zhao. In this paper, we provide a purely combinatorial proof of the family of truncated identities for the partition function. In particular, we answer a question on combinatorial proofs of two partition identities, which were posed by Wang and Xiao.
配分函数的一组截断恒等式的组合证明
2012年,Andrews和Merca通过研究欧拉五边形数定理的截断级数证明了一个截断分割恒等式。Andrews和Merca的工作开辟了截断θ级数的新研究,在过去的十年中,许多关于截断θ级数的结果得到了证明。最近,Xia, Yee和Zhao用不同于Andrews和Merca选择的截断级数证明了一个新的截断分割恒等式。最近,姚证明了欧拉五边形数定理的一个截断恒等式。该恒等式等价于配分函数的一组截断恒等式,涉及到Andrew-Merca和Xia-Yee-Zhao证明的结果。本文给出了配分函数截断恒等式族的一个纯组合证明。特别地,我们回答了Wang和Xiao提出的两个划分恒等式的组合证明问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信