Induced tree covering and the generalized Yutsis property

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Luís Cunha , Gabriel Duarte , Fábio Protti , Loana Nogueira , Uéverton Souza
{"title":"Induced tree covering and the generalized Yutsis property","authors":"Luís Cunha ,&nbsp;Gabriel Duarte ,&nbsp;Fábio Protti ,&nbsp;Loana Nogueira ,&nbsp;Uéverton Souza","doi":"10.1016/j.jcss.2025.103636","DOIUrl":null,"url":null,"abstract":"<div><div>The Yutsis property of a graph <em>G</em> is the property of partitioning its vertex set into two induced trees. Although recognizing Yutsis graphs is NP-complete even on planar graphs, it is still possible to consider two even more challenging problems: (i) recognizing <em>k</em>-Yutsis graphs, which are graphs that have their vertex sets partitioned into <em>k</em> induced trees, for a fixed <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>; (ii) determining the tree cover number of a given graph <em>G</em>, i.e., the minimum number of vertex-disjoint induced trees covering all vertices of <em>G</em>. We prove that determining the tree cover number of a split graph <em>G</em> is NP-hard, contrasting with the polynomial-time recognition of <em>k</em>-Yutsis chordal graphs. We also investigate the tree cover number computation and the <em>k</em>-Yutsis graph recognition concerning treewidth and clique-width parameterizations.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"151 ","pages":"Article 103636"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000182","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Yutsis property of a graph G is the property of partitioning its vertex set into two induced trees. Although recognizing Yutsis graphs is NP-complete even on planar graphs, it is still possible to consider two even more challenging problems: (i) recognizing k-Yutsis graphs, which are graphs that have their vertex sets partitioned into k induced trees, for a fixed k2; (ii) determining the tree cover number of a given graph G, i.e., the minimum number of vertex-disjoint induced trees covering all vertices of G. We prove that determining the tree cover number of a split graph G is NP-hard, contrasting with the polynomial-time recognition of k-Yutsis chordal graphs. We also investigate the tree cover number computation and the k-Yutsis graph recognition concerning treewidth and clique-width parameterizations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信