Languages given by finite automata over the unary alphabet

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Wojciech Czerwiński , Maciej Dębski , Tomasz Gogasz , Gordon Hoi , Sanjay Jain , Michał Skrzypczak , Frank Stephan , Christopher Tan
{"title":"Languages given by finite automata over the unary alphabet","authors":"Wojciech Czerwiński ,&nbsp;Maciej Dębski ,&nbsp;Tomasz Gogasz ,&nbsp;Gordon Hoi ,&nbsp;Sanjay Jain ,&nbsp;Michał Skrzypczak ,&nbsp;Frank Stephan ,&nbsp;Christopher Tan","doi":"10.1016/j.jcss.2025.103634","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the complexity of operations on finite automata and the complexity of their decision problems when the alphabet is unary. Let <em>n</em> denote the number of states of the input automata considered. The following main results are obtained:</div><div>(1) Equality and inclusion of NFAs can be decided within time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></msup></math></span>. The previous upper bound <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup></math></span> was by Chrobak (1986).</div><div>(2) One can determine a UFA (unambiguous finite automata) for complement of another UFA or union of two UFAs using at most quasipolynomial number of states. However, for concatenation of two <em>n</em>-state UFAs, the worst case is a UFA having <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>Θ</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></msup></math></span> states.</div><div>(3) Results when an infinite <em>ω</em>-word given by a UFA or an NFA is a member of a given regular <em>ω</em>-language are obtained.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"151 ","pages":"Article 103634"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000169","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the complexity of operations on finite automata and the complexity of their decision problems when the alphabet is unary. Let n denote the number of states of the input automata considered. The following main results are obtained:
(1) Equality and inclusion of NFAs can be decided within time 2O((nlogn)1/3). The previous upper bound 2O((nlogn)1/2) was by Chrobak (1986).
(2) One can determine a UFA (unambiguous finite automata) for complement of another UFA or union of two UFAs using at most quasipolynomial number of states. However, for concatenation of two n-state UFAs, the worst case is a UFA having 2Θ((nlog2n)1/3) states.
(3) Results when an infinite ω-word given by a UFA or an NFA is a member of a given regular ω-language are obtained.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信