Data-driven dynamic modeling for precise trajectory tracking of a bio-inspired robotic fish

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Zhiping Wang , Zonggang Li , Guangqing Xia , Huifeng Kang , Bin Li , Qingquan Li , Lixin Zheng
{"title":"Data-driven dynamic modeling for precise trajectory tracking of a bio-inspired robotic fish","authors":"Zhiping Wang ,&nbsp;Zonggang Li ,&nbsp;Guangqing Xia ,&nbsp;Huifeng Kang ,&nbsp;Bin Li ,&nbsp;Qingquan Li ,&nbsp;Lixin Zheng","doi":"10.1016/j.apor.2025.104463","DOIUrl":null,"url":null,"abstract":"<div><div>We propose utilizing an attention mechanism and deep neural networks to develop a hydrodynamic identification model, integrated with a time-triggered nonlinear model predictive controller (ENMPC) for precise trajectory tracking of a robotic fish. A central pattern generator (CPG) network was employed to design a synergistic gait controller for the robotic fish that could coordinate its pectoral fins and flexible body/caudal fins to enable multimodal motion. We derived a nonlinear map between the driving parameters and the thrust/torque of the robotic fish using a computational fluid dynamics (CFD) simulation dataset. The attention mechanism was applied to incorporate laminar flow effects and construct a hydrodynamic identification model based on a bidirectional long short-term memory (Bi-LSTM) network. This identification model serves as the foundation for learning a control transformation model that operates as its inverse. Finally, event-triggered nonlinear model predictive constraints were adjusted to account for external disturbances and thereby ensure the convergence of robotic fish tracking errors while minimizing computational costs.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"156 ","pages":"Article 104463"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725000513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

We propose utilizing an attention mechanism and deep neural networks to develop a hydrodynamic identification model, integrated with a time-triggered nonlinear model predictive controller (ENMPC) for precise trajectory tracking of a robotic fish. A central pattern generator (CPG) network was employed to design a synergistic gait controller for the robotic fish that could coordinate its pectoral fins and flexible body/caudal fins to enable multimodal motion. We derived a nonlinear map between the driving parameters and the thrust/torque of the robotic fish using a computational fluid dynamics (CFD) simulation dataset. The attention mechanism was applied to incorporate laminar flow effects and construct a hydrodynamic identification model based on a bidirectional long short-term memory (Bi-LSTM) network. This identification model serves as the foundation for learning a control transformation model that operates as its inverse. Finally, event-triggered nonlinear model predictive constraints were adjusted to account for external disturbances and thereby ensure the convergence of robotic fish tracking errors while minimizing computational costs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信