Effect of soil remoulding on loss of embedment and bearing capacity of square plate anchors in clay

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Li Cheng , Yuxia Hu , Yunrui Han , M.S. Hossain , Zhichao Shen
{"title":"Effect of soil remoulding on loss of embedment and bearing capacity of square plate anchors in clay","authors":"Li Cheng ,&nbsp;Yuxia Hu ,&nbsp;Yunrui Han ,&nbsp;M.S. Hossain ,&nbsp;Zhichao Shen","doi":"10.1016/j.apor.2025.104470","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the keying behaviour and capacity of square plate anchors in clay through three-dimensional large deformation finite element (LDFE) analysis. Strain rate dependency of the undrained shear strength and shear induced remoulding of clay (strain softening) are accounted for. The current LDFE results are first validated against existing centrifuge test data, theoretical and numerical results; with good agreement obtained. The soil remoulding effect on the anchor behaviour is then explored varying soil strength heterogeneity, soil sensitivity, anchor embedment ratio after installation, load eccentricity, and load inclination at the mudline. The clay surrounding the anchor undergoes significant remoulding during keying, resulting in a significant reduction of anchor embedment depth and capacity under subsequent loading. Design expressions and charts are proposed for assessing loss of embedment and ultimate bearing capacity. The keying behaviours of square plate anchors are compared with existing those of strip plate anchors. The square anchors show higher capacities and lower loss of embedment in both uniform and normally consolidated clays, which demonstrate that a simple shape factor cannot be applied from strip to square plate anchors.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"156 ","pages":"Article 104470"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725000586","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the keying behaviour and capacity of square plate anchors in clay through three-dimensional large deformation finite element (LDFE) analysis. Strain rate dependency of the undrained shear strength and shear induced remoulding of clay (strain softening) are accounted for. The current LDFE results are first validated against existing centrifuge test data, theoretical and numerical results; with good agreement obtained. The soil remoulding effect on the anchor behaviour is then explored varying soil strength heterogeneity, soil sensitivity, anchor embedment ratio after installation, load eccentricity, and load inclination at the mudline. The clay surrounding the anchor undergoes significant remoulding during keying, resulting in a significant reduction of anchor embedment depth and capacity under subsequent loading. Design expressions and charts are proposed for assessing loss of embedment and ultimate bearing capacity. The keying behaviours of square plate anchors are compared with existing those of strip plate anchors. The square anchors show higher capacities and lower loss of embedment in both uniform and normally consolidated clays, which demonstrate that a simple shape factor cannot be applied from strip to square plate anchors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信