Proteomic evaluation of borosilicate hybrid sol-gel coatings with osteogenic, immunomodulatory and antibacterial properties

IF 5.4 2区 医学 Q1 BIOPHYSICS
Francisco Romero-Gavilán , Andreia Cerqueira , Iñaki García-Arnáez , Loredana Scalschi , Begonya Vicedo , Mikel Azkargorta , Félix Elortza , Raúl Izquierdo , Mariló Gurruchaga , Isabel Goñi , Julio Suay
{"title":"Proteomic evaluation of borosilicate hybrid sol-gel coatings with osteogenic, immunomodulatory and antibacterial properties","authors":"Francisco Romero-Gavilán ,&nbsp;Andreia Cerqueira ,&nbsp;Iñaki García-Arnáez ,&nbsp;Loredana Scalschi ,&nbsp;Begonya Vicedo ,&nbsp;Mikel Azkargorta ,&nbsp;Félix Elortza ,&nbsp;Raúl Izquierdo ,&nbsp;Mariló Gurruchaga ,&nbsp;Isabel Goñi ,&nbsp;Julio Suay","doi":"10.1016/j.colsurfb.2025.114561","DOIUrl":null,"url":null,"abstract":"<div><div>Silica hybrid sol-gel coatings represent an interesting approach to bioactivate dental implants. Boron is known for its osteogenic, angiogenic and antibacterial functions in biomedical applications. This study describes the synthesis of a novel borosilicate hybrid sol-gel coating using a mixture of methyltrimethoxysilane, tetraethyl orthosilicate and trimethyl borate (TMB). Coatings with different amounts of boron were obtained, and their physiochemical properties were examined; <em>in vitro</em> tests with human osteoblasts and macrophages (THP-1) were carried out. The effects of these materials on bacteria viability were evaluated using <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. The human serum proteins adsorbed onto the coatings were analysed employing proteomic techniques. To synthesise the new materials, the appropriate sol-gel reactions were developed; boron was integrated into the silica network, and well-adhering coatings were obtained. These borosilicate coatings were non-cytotoxic, displayed osteogenic potential, and upregulated adsorption of proteins related to bone regeneration (IGF2, ALS and APOE). Boron upregulated the expression of TNF-α, INFg and TGF-β and increased the TNF-α and TGF-β cytokine production in THP-1. Moreover, the addition of boron caused downregulation of NOX2 expression. Proteomic analysis revealed that boron-doping reduced the adsorption of immunoglobulins and complement system proteins. It also caused an increase in the levels of apolipoproteins, antioxidant proteins and serum amyloid A proteins, which was in agreement with <em>in vitro</em> results. The coatings with 10 and 20 % TMB displayed antibacterial effect against <em>S. aureus</em>. The results of this study will enhance our comprehension of interactions between boron-containing biomaterials and biological systems.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"250 ","pages":"Article 114561"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000682","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Silica hybrid sol-gel coatings represent an interesting approach to bioactivate dental implants. Boron is known for its osteogenic, angiogenic and antibacterial functions in biomedical applications. This study describes the synthesis of a novel borosilicate hybrid sol-gel coating using a mixture of methyltrimethoxysilane, tetraethyl orthosilicate and trimethyl borate (TMB). Coatings with different amounts of boron were obtained, and their physiochemical properties were examined; in vitro tests with human osteoblasts and macrophages (THP-1) were carried out. The effects of these materials on bacteria viability were evaluated using Escherichia coli and Staphylococcus aureus. The human serum proteins adsorbed onto the coatings were analysed employing proteomic techniques. To synthesise the new materials, the appropriate sol-gel reactions were developed; boron was integrated into the silica network, and well-adhering coatings were obtained. These borosilicate coatings were non-cytotoxic, displayed osteogenic potential, and upregulated adsorption of proteins related to bone regeneration (IGF2, ALS and APOE). Boron upregulated the expression of TNF-α, INFg and TGF-β and increased the TNF-α and TGF-β cytokine production in THP-1. Moreover, the addition of boron caused downregulation of NOX2 expression. Proteomic analysis revealed that boron-doping reduced the adsorption of immunoglobulins and complement system proteins. It also caused an increase in the levels of apolipoproteins, antioxidant proteins and serum amyloid A proteins, which was in agreement with in vitro results. The coatings with 10 and 20 % TMB displayed antibacterial effect against S. aureus. The results of this study will enhance our comprehension of interactions between boron-containing biomaterials and biological systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信