Disruption of the endogenous indole glucosinolate pathway impacts the Arabidopsis thaliana root exudation profile and rhizobacterial community

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
Daniel Acuña , Molly C. Bletz , Joelle Sasse , Shirley A. Micallef , Suzanne Kosina , Benjamin P. Bowen , Trent R. Northen , Adán Colón-Carmona
{"title":"Disruption of the endogenous indole glucosinolate pathway impacts the Arabidopsis thaliana root exudation profile and rhizobacterial community","authors":"Daniel Acuña ,&nbsp;Molly C. Bletz ,&nbsp;Joelle Sasse ,&nbsp;Shirley A. Micallef ,&nbsp;Suzanne Kosina ,&nbsp;Benjamin P. Bowen ,&nbsp;Trent R. Northen ,&nbsp;Adán Colón-Carmona","doi":"10.1016/j.rhisph.2025.101046","DOIUrl":null,"url":null,"abstract":"<div><div>Root exudates are composed of primary and secondary metabolites known to modulate the rhizosphere microbiota. Glucosinolates are defense compounds present in the Brassicaceae family capable of deterring pathogens, herbivores and biotic stressors in the phyllosphere. In addition, traces of glucosinolates and their hydrolyzed byproducts have been found in the soil, suggesting that these secondary metabolites could play a role in the modulation and establishment of the rhizosphere microbial community associated with this family. We used <em>Arabidopsis thaliana</em> mutant lines, including the <em>cyp79B2cyp79B3</em> double mutant line with a disruption in the indole glucosinolate pathway and <em>atr1D</em>, which overexpresses ATR1 and increases glucosinolate production. These lines were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 16S rRNA amplicon sequencing to evaluate how genetic modifications to the indole glucosinolate pathway affects the root exudate profile of <em>Arabidopsis thaliana</em>, and, in turn, impacts the rhizosphere microbial community. Metabolic analysis of root exudates from the wild-type Columbia (Col-0), along with the mutant lines, confirmed that alterations to the indole glucosinolate biosynthetic pathway result in shifts in the root exudate profile of the plant. We observed changes in the relative abundance of exuded metabolites. Moreover, 16S rRNA amplicon sequencing results provided evidence that the rhizobacterial communities associated with the plant lines used were directly impacted in diversity and community composition. This work provides further information on the involvement of secondary metabolites and their role in modulating the rhizobacterial community. Root metabolites dictate the presence of different bacterial species, including plant growth-promoting rhizobacteria (PGPR). Our results suggest that genetic alterations in the indole glucosinolate pathway cause disruptions beyond the endogenous levels of the plant, significantly changing the abundance and presence of different metabolites in the root exudates of the plants as well as the microbial rhizosphere community.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"33 ","pages":"Article 101046"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245221982500031X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Root exudates are composed of primary and secondary metabolites known to modulate the rhizosphere microbiota. Glucosinolates are defense compounds present in the Brassicaceae family capable of deterring pathogens, herbivores and biotic stressors in the phyllosphere. In addition, traces of glucosinolates and their hydrolyzed byproducts have been found in the soil, suggesting that these secondary metabolites could play a role in the modulation and establishment of the rhizosphere microbial community associated with this family. We used Arabidopsis thaliana mutant lines, including the cyp79B2cyp79B3 double mutant line with a disruption in the indole glucosinolate pathway and atr1D, which overexpresses ATR1 and increases glucosinolate production. These lines were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 16S rRNA amplicon sequencing to evaluate how genetic modifications to the indole glucosinolate pathway affects the root exudate profile of Arabidopsis thaliana, and, in turn, impacts the rhizosphere microbial community. Metabolic analysis of root exudates from the wild-type Columbia (Col-0), along with the mutant lines, confirmed that alterations to the indole glucosinolate biosynthetic pathway result in shifts in the root exudate profile of the plant. We observed changes in the relative abundance of exuded metabolites. Moreover, 16S rRNA amplicon sequencing results provided evidence that the rhizobacterial communities associated with the plant lines used were directly impacted in diversity and community composition. This work provides further information on the involvement of secondary metabolites and their role in modulating the rhizobacterial community. Root metabolites dictate the presence of different bacterial species, including plant growth-promoting rhizobacteria (PGPR). Our results suggest that genetic alterations in the indole glucosinolate pathway cause disruptions beyond the endogenous levels of the plant, significantly changing the abundance and presence of different metabolites in the root exudates of the plants as well as the microbial rhizosphere community.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rhizosphere
Rhizosphere Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍: Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots. We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信