{"title":"Carbon nanoparticles-Fe(II) complex combined with sorafenib for ferroptosis-induced antitumor effects in triple-negative breast cancer","authors":"Ping Xie , Ting Qu , Kexin Tang , Yuanfang Huang , Guangfu Zeng , Huahui Yuan , Qian Xin , Yufeng Zhao , Jinmei Yang , Cheng Zeng , Xian Wu , Sheng-Tao Yang , Xiaohai Tang","doi":"10.1016/j.colsurfb.2025.114562","DOIUrl":null,"url":null,"abstract":"<div><div>Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer that lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, whose systemic treatment options are currently limited to chemotherapy. Carbon nanoparticles-Fe(II) complex (CNSI-Fe) is a promising antitumor drug that induces ferroptosis to kill tumor cells efficiently. In this study, we combined CNSI-Fe and a ferroptosis inducer sorafenib (SRF) to achieve the efficient chemotherapy of TNBC. CNSI-Fe could adsorb SRF by hydrophobic interaction and π-π stacking with a maximum adsorption capacity of 31 mg/g. During the in vitro assays, CNSI-Fe+SRF combination inhibited the cell viability of 4T1 cells much more efficiently than CNSI-Fe or SRF alone. The high Fe uptake, hydroxyl radical generation and oxidative damages verified the ferroptosis of 4T1 cells upon the CNSI-Fe+SRF treatment. During the in vivo evaluations, SRF enhanced the therapeutic effect of CNSI-Fe as indicated by the higher tumor growth inhibition rate of 67.8 % and the higher survival rate. CNSI captured SRF in tumor to give a 6 mg/kg uptake, which lowered the glutathione peroxidase 4 (GPX4) level and enhanced the hydroxyl radical production of 4T1 tumor. In addition, CNSI-Fe treatment up-regulated the genes associated with antioxidative responses, but the up-regulation was offset by SRF. CNSI-Fe+SRF group showed similar toxicity to mice as SRF alone in the biosafety evaluations. Our results collectively indicated that the combination of CNSI-Fe and SRF could efficiently treat TNBC through ferroptosis.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"250 ","pages":"Article 114562"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000694","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer that lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, whose systemic treatment options are currently limited to chemotherapy. Carbon nanoparticles-Fe(II) complex (CNSI-Fe) is a promising antitumor drug that induces ferroptosis to kill tumor cells efficiently. In this study, we combined CNSI-Fe and a ferroptosis inducer sorafenib (SRF) to achieve the efficient chemotherapy of TNBC. CNSI-Fe could adsorb SRF by hydrophobic interaction and π-π stacking with a maximum adsorption capacity of 31 mg/g. During the in vitro assays, CNSI-Fe+SRF combination inhibited the cell viability of 4T1 cells much more efficiently than CNSI-Fe or SRF alone. The high Fe uptake, hydroxyl radical generation and oxidative damages verified the ferroptosis of 4T1 cells upon the CNSI-Fe+SRF treatment. During the in vivo evaluations, SRF enhanced the therapeutic effect of CNSI-Fe as indicated by the higher tumor growth inhibition rate of 67.8 % and the higher survival rate. CNSI captured SRF in tumor to give a 6 mg/kg uptake, which lowered the glutathione peroxidase 4 (GPX4) level and enhanced the hydroxyl radical production of 4T1 tumor. In addition, CNSI-Fe treatment up-regulated the genes associated with antioxidative responses, but the up-regulation was offset by SRF. CNSI-Fe+SRF group showed similar toxicity to mice as SRF alone in the biosafety evaluations. Our results collectively indicated that the combination of CNSI-Fe and SRF could efficiently treat TNBC through ferroptosis.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.