Pumpkin seeds oil rescues colchicine-induced neurotoxicity in rats via modifying oxidative stress, DNA damage, and immunoexpression of BDNF and GFAP

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY
Dina Y. Hegab , Nabela I. El-Sharkawy , Gihan G. Moustafa , Yasmina M. Abd-Elhakim , Enas N. Said , Mohamed M.M. Metwally , Taghred M. Saber
{"title":"Pumpkin seeds oil rescues colchicine-induced neurotoxicity in rats via modifying oxidative stress, DNA damage, and immunoexpression of BDNF and GFAP","authors":"Dina Y. Hegab ,&nbsp;Nabela I. El-Sharkawy ,&nbsp;Gihan G. Moustafa ,&nbsp;Yasmina M. Abd-Elhakim ,&nbsp;Enas N. Said ,&nbsp;Mohamed M.M. Metwally ,&nbsp;Taghred M. Saber","doi":"10.1016/j.tice.2025.102792","DOIUrl":null,"url":null,"abstract":"<div><div>Colchicine (CHC), a poisonous plant alkaloid, has been widely utilized for decades in the treatment of gout, but has a rather low therapeutic index, which causes oxidative stress leading to cognitive impairment, brain damage, apoptosis, and hitopathological alterations in humans and experimental animals. The present investigation evaluated the potential palliative effect of the pumpkin seeds oil (PSO) at a dose of 4 ml/kg b.wt against CHC (0.6 mg/kg b.wt) -induced neurotoxic and neurobehavioral effects in rats. Forty male rats weighing 245–260 g were assigned to four groups. The results displayed that CHC exposure induced neurobehavioral disorders and a remarkable decline in the serotonin and dopamine levels and the immunoexpression of BDNF and GFAP in the brain. Besides, CHC treatment evoked brain oxidative stress, as manifested by depleted antioxidant enzyme activities and elevated malondialdehyde (MDA) and protein carbonyl (PC) levels. Also, CHC triggered brain DNA damage, as indicated by a marked increment in the brain 8-Hydroxyguanosine (8-OHdG) level. However, concurrent treatment with the PSO effectively attenuated the CHC-induced toxic effects as evidenced by a noticeable increase in the serotonin (33 ± 3.05) and dopamine (2.48 ± 0.40) concentrations, and the BDNF and GFAP immunoexpression in the brain. Moreover, PSO mitigated CHC-induced brain oxidative stress and DNA damage as shown by elevated antioxidant enzyme activities (164 ± 3.46 SOD and 7.55 ± 0.43 CAT) and reduced MDA (1.62 ± 0.23), PC (1.35 ± 0.23), and 8-OHdG (3.02 ± 0.33) levels. These results concluded that PSO could serve as a therapeutic strategy to ameliorate the neurotoxic and neurobehavioral impacts of CHC.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"94 ","pages":"Article 102792"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000722","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colchicine (CHC), a poisonous plant alkaloid, has been widely utilized for decades in the treatment of gout, but has a rather low therapeutic index, which causes oxidative stress leading to cognitive impairment, brain damage, apoptosis, and hitopathological alterations in humans and experimental animals. The present investigation evaluated the potential palliative effect of the pumpkin seeds oil (PSO) at a dose of 4 ml/kg b.wt against CHC (0.6 mg/kg b.wt) -induced neurotoxic and neurobehavioral effects in rats. Forty male rats weighing 245–260 g were assigned to four groups. The results displayed that CHC exposure induced neurobehavioral disorders and a remarkable decline in the serotonin and dopamine levels and the immunoexpression of BDNF and GFAP in the brain. Besides, CHC treatment evoked brain oxidative stress, as manifested by depleted antioxidant enzyme activities and elevated malondialdehyde (MDA) and protein carbonyl (PC) levels. Also, CHC triggered brain DNA damage, as indicated by a marked increment in the brain 8-Hydroxyguanosine (8-OHdG) level. However, concurrent treatment with the PSO effectively attenuated the CHC-induced toxic effects as evidenced by a noticeable increase in the serotonin (33 ± 3.05) and dopamine (2.48 ± 0.40) concentrations, and the BDNF and GFAP immunoexpression in the brain. Moreover, PSO mitigated CHC-induced brain oxidative stress and DNA damage as shown by elevated antioxidant enzyme activities (164 ± 3.46 SOD and 7.55 ± 0.43 CAT) and reduced MDA (1.62 ± 0.23), PC (1.35 ± 0.23), and 8-OHdG (3.02 ± 0.33) levels. These results concluded that PSO could serve as a therapeutic strategy to ameliorate the neurotoxic and neurobehavioral impacts of CHC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信