Evaluating the sensitivity of vegetation indices to leaf area index variability at individual tree level using multispectral drone acquisitions

IF 5.6 1区 农林科学 Q1 AGRONOMY
Xianchao Tian , Xingyu Jia , Yizhuo Da , Jingyi Liu , Wenyan Ge
{"title":"Evaluating the sensitivity of vegetation indices to leaf area index variability at individual tree level using multispectral drone acquisitions","authors":"Xianchao Tian ,&nbsp;Xingyu Jia ,&nbsp;Yizhuo Da ,&nbsp;Jingyi Liu ,&nbsp;Wenyan Ge","doi":"10.1016/j.agrformet.2025.110441","DOIUrl":null,"url":null,"abstract":"<div><div>Vegetation indices (VIs) are widely applied to estimate leaf area index (LAI) for monitoring vegetation vigor and growth dynamics. However, the saturation issues in VIs caused by crown closure during the growing season pose significant challenges to the application of VIs in LAI estimation, particularly at the individual tree level. To address this, the feasibility of common VIs for LAI estimation at the individual tree level throughout the growing season was analyzed using data from digital hemispherical photography (DHP) and Unmanned Aerial Vehicle (UAV) acquisition. Additionally, the physical mechanisms underlying a generic VI-based estimation model were explored using the PROSAIL model and Global Sensitivity Analysis (GSA). Furthermore, the relationships between observed LAI derived from DHP and UAV-based VIs across different phenological development phases throughout the growing season were analyzed. The results suggested that the normalized difference vegetation index (NDVI) and its faster substitute infrared percentage vegetation index (IPVI) exhibited the best capabilities for LAI estimation (R<sup>2</sup> = 0.55 and RMSE = 0.77 for both) across the entire growing season. The LAI-VI relationship varied seasonally due to the saturation issues on VIs, with R<sup>2</sup> values increasing from the leaf budburst to the growing stage, decreasing during maturation, and rising again in the senescence stage. This indicated that seasonal effects induced by phenological changes should be considered when estimating LAI using VIs. Additionally, the saturation of VIs was influenced by soil background, leaf properties (especially leaf chlorophyll content [C<sub>ab</sub>] and dry matter content [C<sub>m</sub>]), and canopy structures (especially average leaf inclination angle, ALA). Compared to satellites, UAV-based sensors were more effective at mitigating spectral saturation at fine-scale due to their finer spatial resolution and narrower bandwidth. The drone-based VIs used in this study provided reliable estimates and effectively described temporal variability in LAI, contributing to a better understanding of VI saturation effects.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"364 ","pages":"Article 110441"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000619","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Vegetation indices (VIs) are widely applied to estimate leaf area index (LAI) for monitoring vegetation vigor and growth dynamics. However, the saturation issues in VIs caused by crown closure during the growing season pose significant challenges to the application of VIs in LAI estimation, particularly at the individual tree level. To address this, the feasibility of common VIs for LAI estimation at the individual tree level throughout the growing season was analyzed using data from digital hemispherical photography (DHP) and Unmanned Aerial Vehicle (UAV) acquisition. Additionally, the physical mechanisms underlying a generic VI-based estimation model were explored using the PROSAIL model and Global Sensitivity Analysis (GSA). Furthermore, the relationships between observed LAI derived from DHP and UAV-based VIs across different phenological development phases throughout the growing season were analyzed. The results suggested that the normalized difference vegetation index (NDVI) and its faster substitute infrared percentage vegetation index (IPVI) exhibited the best capabilities for LAI estimation (R2 = 0.55 and RMSE = 0.77 for both) across the entire growing season. The LAI-VI relationship varied seasonally due to the saturation issues on VIs, with R2 values increasing from the leaf budburst to the growing stage, decreasing during maturation, and rising again in the senescence stage. This indicated that seasonal effects induced by phenological changes should be considered when estimating LAI using VIs. Additionally, the saturation of VIs was influenced by soil background, leaf properties (especially leaf chlorophyll content [Cab] and dry matter content [Cm]), and canopy structures (especially average leaf inclination angle, ALA). Compared to satellites, UAV-based sensors were more effective at mitigating spectral saturation at fine-scale due to their finer spatial resolution and narrower bandwidth. The drone-based VIs used in this study provided reliable estimates and effectively described temporal variability in LAI, contributing to a better understanding of VI saturation effects.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信