Sensitivity of ship hull reliability considering geometric imperfections and residual stresses

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Aws Idris, Mohamed Soliman
{"title":"Sensitivity of ship hull reliability considering geometric imperfections and residual stresses","authors":"Aws Idris,&nbsp;Mohamed Soliman","doi":"10.1016/j.strusafe.2025.102575","DOIUrl":null,"url":null,"abstract":"<div><div>Initial geometric imperfections and welding-induced residual stresses are inevitable consequences of ship fabrication and manufacturing processes. This paper quantifies the effect of these imperfections, as well as other input parameters, on the reliability of ship hull girders. The paper introduces a comprehensive variance-based sensitivity analysis approach, assisted by artificial neural networks, to characterize the key input parameters influencing the failure probability under different operational conditions. A total of 16 input parameters related to load and capacity quantification are considered in the simulation. The ultimate strength of the hull girder is quantified using a high-fidelity nonlinear finite element model that accounts for initial geometric imperfections and residual stresses. The vertical bending moments acting on the ship during its service life are quantified probabilistically. The results indicate that although it is essential to account for initial geometric imperfections to properly establish the ultimate hull capacity, the uncertainty in their magnitude has low effect on the reliability of the investigated hull. Accordingly, their magnitude can be considered deterministically in the probabilistic simulations. It was also found that the influence of various input parameters on the variability of the ship reliability depends on the considered operational condition.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"114 ","pages":"Article 102575"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000037","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Initial geometric imperfections and welding-induced residual stresses are inevitable consequences of ship fabrication and manufacturing processes. This paper quantifies the effect of these imperfections, as well as other input parameters, on the reliability of ship hull girders. The paper introduces a comprehensive variance-based sensitivity analysis approach, assisted by artificial neural networks, to characterize the key input parameters influencing the failure probability under different operational conditions. A total of 16 input parameters related to load and capacity quantification are considered in the simulation. The ultimate strength of the hull girder is quantified using a high-fidelity nonlinear finite element model that accounts for initial geometric imperfections and residual stresses. The vertical bending moments acting on the ship during its service life are quantified probabilistically. The results indicate that although it is essential to account for initial geometric imperfections to properly establish the ultimate hull capacity, the uncertainty in their magnitude has low effect on the reliability of the investigated hull. Accordingly, their magnitude can be considered deterministically in the probabilistic simulations. It was also found that the influence of various input parameters on the variability of the ship reliability depends on the considered operational condition.
考虑几何缺陷和残余应力的船体可靠性敏感性
初始几何缺陷和焊接残余应力是船舶制造过程中不可避免的结果。本文量化了这些缺陷以及其他输入参数对船体大梁可靠性的影响。本文介绍了一种基于方差的综合灵敏度分析方法,并辅以人工神经网络对不同工况下影响失效概率的关键输入参数进行表征。仿真中共考虑了16个与负荷和容量量化相关的输入参数。采用考虑初始几何缺陷和残余应力的高保真非线性有限元模型对船体梁的极限强度进行了量化。对舰船在使用寿命期间所受的垂直弯矩进行了概率量化。结果表明,虽然考虑初始几何缺陷是建立船体极限承载力的必要条件,但其大小的不确定性对船体可靠性的影响很小。因此,在概率模拟中,它们的大小可以被认为是确定性的。研究还发现,各种输入参数对舰船可靠性变异性的影响取决于所考虑的运行状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信