{"title":"Physically Cross-Linked Hydrogel Designed for Thermochromic Smart Windows: Balance between Thermal Stability and Processability","authors":"Yuzhu Chen, and , Chao Zheng*, ","doi":"10.1021/acssuschemeng.4c0995010.1021/acssuschemeng.4c09950","DOIUrl":null,"url":null,"abstract":"<p >Thermosensitive polymer solutions and hydrogels show great potential for thermochromic windows. However, current research often overlooks two critical factors: thermal stability under heating and processability, which are typically contradictory. This study develops a physically cross-linked hydrogel specifically for thermochromic smart windows, aiming to achieve an optimal balance between these two factors. The hydrogel is made from low-cost, environmentally friendly materials, using commercial block polyether (L62) combined with a poly(vinyl alcohol)-borosilicate network. By optimizing PVA and borax concentrations at 2 and 0.3%, the hydrogel demonstrates good thermal stability, showing no significant changes after repeated heating to 60 °C for 9 h. Additionally, it exhibits excellent processability, allowing it to flow and fill gaps between glass slides when heated. The transition temperature for transmittance and solar modulation can be easily adjusted by varying the concentration of L62. The resulting hydrogel achieves tunable transition temperature, high luminous transmittance (71.2%), solar modulation efficiency (72.2%), and excellent durability. Compared to air-sandwiched windows, these thermochromic smart windows exhibit a significant cooling effect, with temperature responsiveness contributing up to 50%, depending on hydrogel thickness. This work addresses key issues that will advance the industrial application of hydrogel-derived thermochromic smart windows.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 6","pages":"2574–2585 2574–2585"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c09950","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermosensitive polymer solutions and hydrogels show great potential for thermochromic windows. However, current research often overlooks two critical factors: thermal stability under heating and processability, which are typically contradictory. This study develops a physically cross-linked hydrogel specifically for thermochromic smart windows, aiming to achieve an optimal balance between these two factors. The hydrogel is made from low-cost, environmentally friendly materials, using commercial block polyether (L62) combined with a poly(vinyl alcohol)-borosilicate network. By optimizing PVA and borax concentrations at 2 and 0.3%, the hydrogel demonstrates good thermal stability, showing no significant changes after repeated heating to 60 °C for 9 h. Additionally, it exhibits excellent processability, allowing it to flow and fill gaps between glass slides when heated. The transition temperature for transmittance and solar modulation can be easily adjusted by varying the concentration of L62. The resulting hydrogel achieves tunable transition temperature, high luminous transmittance (71.2%), solar modulation efficiency (72.2%), and excellent durability. Compared to air-sandwiched windows, these thermochromic smart windows exhibit a significant cooling effect, with temperature responsiveness contributing up to 50%, depending on hydrogel thickness. This work addresses key issues that will advance the industrial application of hydrogel-derived thermochromic smart windows.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.