Two high-order compact finite difference schemes for solving the nonlinear generalized Benjamin-Bona-Mahony-Burgers equation

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Shengdi Wang, Tingfu Ma, Lili Wu, Xiaojia Yang
{"title":"Two high-order compact finite difference schemes for solving the nonlinear generalized Benjamin-Bona-Mahony-Burgers equation","authors":"Shengdi Wang,&nbsp;Tingfu Ma,&nbsp;Lili Wu,&nbsp;Xiaojia Yang","doi":"10.1016/j.amc.2025.129360","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, two numerical methods for solving the initial boundary value problem of one-dimensional nonlinear Generalized Benjamin-Borne-Mahony-Burgers equation are presented. Both methods utilize a fourth-order backward difference scheme for the discretization of the first-order derivative in the time direction, and apply a fourth-order compact difference scheme and a fourth-order Padé scheme to discretize the second-order and first-order spatial derivatives, respectively. The primary difference between the two methods lies in their distinct linearization strategies for the nonlinear term, which results in the formation of two linear systems. Both methods achieve fourth-order convergence in time and space. Subsequently, theoretical proofs are provided for the conservation property, stability and the existence and uniqueness of the numerical solution of the proposed numerical scheme. Finally, numerical experiments are conducted to verify the reliability and effectiveness of both methods.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"496 ","pages":"Article 129360"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325000876","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, two numerical methods for solving the initial boundary value problem of one-dimensional nonlinear Generalized Benjamin-Borne-Mahony-Burgers equation are presented. Both methods utilize a fourth-order backward difference scheme for the discretization of the first-order derivative in the time direction, and apply a fourth-order compact difference scheme and a fourth-order Padé scheme to discretize the second-order and first-order spatial derivatives, respectively. The primary difference between the two methods lies in their distinct linearization strategies for the nonlinear term, which results in the formation of two linear systems. Both methods achieve fourth-order convergence in time and space. Subsequently, theoretical proofs are provided for the conservation property, stability and the existence and uniqueness of the numerical solution of the proposed numerical scheme. Finally, numerical experiments are conducted to verify the reliability and effectiveness of both methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信