{"title":"Two high-order compact finite difference schemes for solving the nonlinear generalized Benjamin-Bona-Mahony-Burgers equation","authors":"Shengdi Wang, Tingfu Ma, Lili Wu, Xiaojia Yang","doi":"10.1016/j.amc.2025.129360","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, two numerical methods for solving the initial boundary value problem of one-dimensional nonlinear Generalized Benjamin-Borne-Mahony-Burgers equation are presented. Both methods utilize a fourth-order backward difference scheme for the discretization of the first-order derivative in the time direction, and apply a fourth-order compact difference scheme and a fourth-order Padé scheme to discretize the second-order and first-order spatial derivatives, respectively. The primary difference between the two methods lies in their distinct linearization strategies for the nonlinear term, which results in the formation of two linear systems. Both methods achieve fourth-order convergence in time and space. Subsequently, theoretical proofs are provided for the conservation property, stability and the existence and uniqueness of the numerical solution of the proposed numerical scheme. Finally, numerical experiments are conducted to verify the reliability and effectiveness of both methods.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"496 ","pages":"Article 129360"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325000876","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, two numerical methods for solving the initial boundary value problem of one-dimensional nonlinear Generalized Benjamin-Borne-Mahony-Burgers equation are presented. Both methods utilize a fourth-order backward difference scheme for the discretization of the first-order derivative in the time direction, and apply a fourth-order compact difference scheme and a fourth-order Padé scheme to discretize the second-order and first-order spatial derivatives, respectively. The primary difference between the two methods lies in their distinct linearization strategies for the nonlinear term, which results in the formation of two linear systems. Both methods achieve fourth-order convergence in time and space. Subsequently, theoretical proofs are provided for the conservation property, stability and the existence and uniqueness of the numerical solution of the proposed numerical scheme. Finally, numerical experiments are conducted to verify the reliability and effectiveness of both methods.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.