Recovery of copper oxide from e-waste using ashing, size reduction, nitric acid leaching, solvent extraction and stripping-precipitation: Parametric and scaling up studies and fate of scarce metals
IF 4.8 2区 材料科学Q1 METALLURGY & METALLURGICAL ENGINEERING
{"title":"Recovery of copper oxide from e-waste using ashing, size reduction, nitric acid leaching, solvent extraction and stripping-precipitation: Parametric and scaling up studies and fate of scarce metals","authors":"Chirag Tamboli, Bina Sengupta","doi":"10.1016/j.hydromet.2025.106451","DOIUrl":null,"url":null,"abstract":"<div><div>Copper recovery from electronic waste in the form of copper oxide was investigated using hydrometallurgy-based process. The recovery process involved dismantling of electronic components, their size reduction, ashing at 600 °C for 4 h to disintegrate the polymer matrix to facilitate metal recovery and remove volatiles as pretreatment, followed by nitric acid leaching, solvent extraction of leachate, and precipitation-stripping with oxalic acid to obtain copper oxalate. Controlled calcinations of the oxalate yielded the valuable copper oxide. Copper concentration in e-waste was found to vary with feed size. Maximum copper concentration of 43.1 % (<em>w</em>/w) was found in the size range of 0.5 mm to 0.355 mm. Maximum leaching of copper (98.7 %) occurred at solid to liquid (S/L) ratio (g/mL) of 1:25 using 10 % nitric acid at 60 °C. For an initial leachate concentration of 30 g/L copper, using 10 % <em>v</em>/v LIX 984 N as the extractant at an organic to aqueous (O/A) phase volume ratio of 1.25:1 resulted in quantitative copper extraction in three stages. Oxalic acid (1 M) was used to strip and precipitate the copper extracted resulting in 99.8 % metal recovery. Scale up of the process did not alter the recoveries. The copper oxide obtained was 99.65 % pure with trace impurities of aluminium and iron. This process aims to achieve high copper recovery while addressing environmental concerns and optimizing resource efficiency, offering potential applications in large-scale electronic waste recycling for valuable metal recovery.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"233 ","pages":"Article 106451"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000167","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Copper recovery from electronic waste in the form of copper oxide was investigated using hydrometallurgy-based process. The recovery process involved dismantling of electronic components, their size reduction, ashing at 600 °C for 4 h to disintegrate the polymer matrix to facilitate metal recovery and remove volatiles as pretreatment, followed by nitric acid leaching, solvent extraction of leachate, and precipitation-stripping with oxalic acid to obtain copper oxalate. Controlled calcinations of the oxalate yielded the valuable copper oxide. Copper concentration in e-waste was found to vary with feed size. Maximum copper concentration of 43.1 % (w/w) was found in the size range of 0.5 mm to 0.355 mm. Maximum leaching of copper (98.7 %) occurred at solid to liquid (S/L) ratio (g/mL) of 1:25 using 10 % nitric acid at 60 °C. For an initial leachate concentration of 30 g/L copper, using 10 % v/v LIX 984 N as the extractant at an organic to aqueous (O/A) phase volume ratio of 1.25:1 resulted in quantitative copper extraction in three stages. Oxalic acid (1 M) was used to strip and precipitate the copper extracted resulting in 99.8 % metal recovery. Scale up of the process did not alter the recoveries. The copper oxide obtained was 99.65 % pure with trace impurities of aluminium and iron. This process aims to achieve high copper recovery while addressing environmental concerns and optimizing resource efficiency, offering potential applications in large-scale electronic waste recycling for valuable metal recovery.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.