Incorporating large-scale economic-environmental-energy coupling assessment and collaborative optimization into sustainable product footprint management: A graph-assisted life cycle energy efficiency enhancement approach

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Tingwei Zhang , Weimin Zhong , Yurong Liu , Renzhi Lu , Xin Peng
{"title":"Incorporating large-scale economic-environmental-energy coupling assessment and collaborative optimization into sustainable product footprint management: A graph-assisted life cycle energy efficiency enhancement approach","authors":"Tingwei Zhang ,&nbsp;Weimin Zhong ,&nbsp;Yurong Liu ,&nbsp;Renzhi Lu ,&nbsp;Xin Peng","doi":"10.1016/j.enconman.2025.119616","DOIUrl":null,"url":null,"abstract":"<div><div>Product footprint management strategies for long-process manufacturing industries generally lack systematic analysis of the interactions between economic, emission, and energy footprints, leading to missed energy conservation and emission reduction opportunities. Accordingly, this paper develops a product economic-environmental-energy footprint coupling assessment and collaborative optimization framework, enabling more precise quantitative analysis and significantly reducing product carbon footprint. Specifically, an integrated model based on Life Cycle Cost (LCC) analysis, Life Cycle Assessment (LCA), and Multi-Regional Input-Output (MRIO) methods is designed to track the costs, energy consumption, and <span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>2</mi></mrow></msub></mrow></math></span> emissions accurately. Given that “end-to-end” footprint assessment methods generally failing to distinguish the sources of high costs, emissions, and energy consumption within the production process, a sub-process-based footprint coupling assessment method is introduced to systematically measure each product’s economic, environmental, and energy impacts. Furthermore, a graph-based multi-objective optimization framework for low-carbon and energy-efficient production layout is established to fully explore the potential for energy conservation, emission reduction, and cost savings. A case study applying the proposed model and methodology to a real-world refinery production site demonstrates that concentrated carbon conversion, allocation, and secondary release are the primary causes of high emissions. After layout optimization, diesel oil’s energy and emission footprints decreased by 71.4% and 73.9%, respectively, showing substantial energy conservation and emission reduction potential. The constructed low-carbon and energy-efficient production layout optimization framework significantly reduces the comprehensive footprint of products and contributes to the green transformation of the refineries.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"329 ","pages":"Article 119616"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425001396","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Product footprint management strategies for long-process manufacturing industries generally lack systematic analysis of the interactions between economic, emission, and energy footprints, leading to missed energy conservation and emission reduction opportunities. Accordingly, this paper develops a product economic-environmental-energy footprint coupling assessment and collaborative optimization framework, enabling more precise quantitative analysis and significantly reducing product carbon footprint. Specifically, an integrated model based on Life Cycle Cost (LCC) analysis, Life Cycle Assessment (LCA), and Multi-Regional Input-Output (MRIO) methods is designed to track the costs, energy consumption, and CO2 emissions accurately. Given that “end-to-end” footprint assessment methods generally failing to distinguish the sources of high costs, emissions, and energy consumption within the production process, a sub-process-based footprint coupling assessment method is introduced to systematically measure each product’s economic, environmental, and energy impacts. Furthermore, a graph-based multi-objective optimization framework for low-carbon and energy-efficient production layout is established to fully explore the potential for energy conservation, emission reduction, and cost savings. A case study applying the proposed model and methodology to a real-world refinery production site demonstrates that concentrated carbon conversion, allocation, and secondary release are the primary causes of high emissions. After layout optimization, diesel oil’s energy and emission footprints decreased by 71.4% and 73.9%, respectively, showing substantial energy conservation and emission reduction potential. The constructed low-carbon and energy-efficient production layout optimization framework significantly reduces the comprehensive footprint of products and contributes to the green transformation of the refineries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信